Holomorphic Curves in Low Dimensions

Holomorphic Curves in Low Dimensions

Author: Chris Wendl

Publisher: Springer

Published: 2018-06-28

Total Pages: 303

ISBN-13: 3319913719

DOWNLOAD EBOOK

This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three. The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds. This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019


Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory

Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory

Author: Chris Wendl

Publisher: Cambridge University Press

Published: 2020-03-26

Total Pages: 198

ISBN-13: 1108759580

DOWNLOAD EBOOK

Intersection theory has played a prominent role in the study of closed symplectic 4-manifolds since Gromov's famous 1985 paper on pseudoholomorphic curves, leading to myriad beautiful rigidity results that are either inaccessible or not true in higher dimensions. Siefring's recent extension of the theory to punctured holomorphic curves allowed similarly important results for contact 3-manifolds and their symplectic fillings. Based on a series of lectures for graduate students in topology, this book begins with an overview of the closed case, and then proceeds to explain the essentials of Siefring's intersection theory and how to use it, and gives some sample applications in low-dimensional symplectic and contact topology. The appendices provide valuable information for researchers, including a concise reference guide on Siefring's theory and a self-contained proof of a weak version of the Micallef–White theorem.


J-holomorphic Curves and Symplectic Topology

J-holomorphic Curves and Symplectic Topology

Author: Dusa McDuff

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 744

ISBN-13: 0821887467

DOWNLOAD EBOOK

The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.


$J$-Holomorphic Curves and Quantum Cohomology

$J$-Holomorphic Curves and Quantum Cohomology

Author: Dusa McDuff

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 220

ISBN-13: 0821803328

DOWNLOAD EBOOK

J -holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J -holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov's compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that the quantum multiplication exists and is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten's calculation for Grassmanians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed.


First International Congress of Chinese Mathematicians

First International Congress of Chinese Mathematicians

Author: Stephen Shing-Toung Yau

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 596

ISBN-13: 0821826522

DOWNLOAD EBOOK

The International Congress of Mathematicians was an historical event that was held at the Morningside Center of Mathematics of the Chinese Academy of Sciences (Beijing). It was the first occasion where Chinese mathematicians from all over the world gathered to present their research. The Morningside Mathematics lectures were given by R. Borcherds, J. Coates, R. Graham, and D. Stroock. Other distinguished speakers included J.-P. Bourguignon, J. Jöst, M. Taylor, and S. L. Lee. Topics covered in the volume include algebra and representation theory, algebraic geometry, number theory and automorphic forms, Riemannian geometry and geometric analysis, mathematical physics, topology, complex analysis and complex geometry, computational mathematics, and combinatorics. Titles in this series are copublished with International Press, Cambridge, MA.


Holomorphic Curves and Global Questions in Contact Geometry

Holomorphic Curves and Global Questions in Contact Geometry

Author: Casim Abbas

Publisher: Springer

Published: 2019-03-29

Total Pages: 328

ISBN-13: 3030118037

DOWNLOAD EBOOK

This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory. An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic curves in the field. The authors proceed to the heart of the material providing a detailed exposition about finite energy planes and periodic orbits (chapter 4) to disk filling methods and applications (chapter 9). The material is self-contained. It includes a number of technical appendices giving the geometric analysis foundations for the main results, so that one may easily follow the discussion. Graduate students as well as researchers who want to learn the basics of this fast developing theory will highly appreciate this accessible approach taken by the authors.


The Breadth of Symplectic and Poisson Geometry

The Breadth of Symplectic and Poisson Geometry

Author: Jerrold E. Marsden

Publisher: Springer Science & Business Media

Published: 2007-07-03

Total Pages: 666

ISBN-13: 0817644199

DOWNLOAD EBOOK

* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics


Characters in Low-Dimensional Topology

Characters in Low-Dimensional Topology

Author: Olivier Collin

Publisher: American Mathematical Soc.

Published: 2020-12-14

Total Pages: 353

ISBN-13: 147045209X

DOWNLOAD EBOOK

This volume contains the proceedings of a conference celebrating the work of Steven Boyer, held from June 2–6, 2018, at Université du Québec à Montréal, Montréal, Québec, Canada. Boyer's contributions to research in low-dimensional geometry and topology, and to the Canadian mathematical community, were recognized during the conference. The articles cover a broad range of topics related, but not limited, to the topology and geometry of 3-manifolds, properties of their fundamental groups and associated representation varieties.


Floer Homology, Gauge Theory, and Low-Dimensional Topology

Floer Homology, Gauge Theory, and Low-Dimensional Topology

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 318

ISBN-13: 9780821838457

DOWNLOAD EBOOK

Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces. The use of gauge theory as a tool for studying topological properties of four-manifolds was pioneered by the fundamental work of Simon Donaldson in theearly 1980s, and was revolutionized by the introduction of the Seiberg-Witten equations in the mid-1990s. Since the birth of the subject, it has retained its close connection with symplectic topology. The analogy between these two fields of study was further underscored by Andreas Floer's constructionof an infinite-dimensional variant of Morse theory that applies in two a priori different contexts: either to define symplectic invariants for pairs of Lagrangian submanifolds of a symplectic manifold, or to define topological This volume is based on lecture courses and advanced seminars given at the 2004 Clay Mathematics Institute Summer School at the Alfred Renyi Institute of Mathematics in Budapest, Hungary. Several of the authors have added a considerable amount of additional material tothat presented at the school, and the resulting volume provides a state-of-the-art introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds. Information for our distributors: Titles in this seriesare copublished with the Clay Mathematics Institute (Cambridge, MA).