This handbook holistically summarises the principles for the energy retrofitting of historic buildings, from the first diagnosis to the adequately designed intervention: preservation of the historic structure, user comfort, and energy efficiency. The content was developed by an interdisciplinary team of researchers. The wide range of different expertise, design examples, calculations, and measuring results from eight case studies makes this manual an indispensable tool for all architects, engineers, and energy consultants.
This timely volume brings together case studies that address the urgent need to manage energy use and improve thermal comfort in modern buildings while preserving their historic significance and character. This collection of ten case studies addresses the issues surrounding the improvement of energy consumption and thermal comfort in modern buildings built between 1928 and 1969 and offers valuable lessons for other structures facing similar issues. These buildings, international in scope and diverse in type, style, and size, range from the Shulman House, a small residence in Los Angeles, to the TD Bank Tower, a skyscraper complex in Toronto, and from the Calouste Gulbenkian Foundation, a cultural venue in Lisbon, to the Van Nelle Factory in Rotterdam, now an office building. Showing ingenuity and sensitivity, the case studies consider improvements to such systems as heating, cooling, lighting, ventilation, and controls. They provide examples that demonstrate best practices in conservation and show ways to reduce carbon footprints, minimize impacts to historic materials and features, and introduce renewable energy sources, in compliance with energy codes and green-building rating systems. The Conserving Modern Heritage series, launched in 2019, is written by architects, engineers, conservators, scholars, and allied professionals. The books in this series provide well-vetted case studies that address the challenges of conserving twentieth-century heritage.
A groundbreaking history of architecture told through the relationship between buildings and energy The story of architecture is the story of humanity. The buildings we live in, from the humblest pre-historic huts to today's skyscrapers, reveal our priorities and ambitions, our family structures and power structures. And to an extent that hasn't been explored until now, architecture has been shaped in every era by our access to energy, from fire to farming to fossil fuels. In this ground-breaking history of world architecture, Barnabas Calder takes us on a dazzling tour of some of the most astonishing buildings of the past fifteen thousand years, from Uruk, via Ancient Rome and Victorian Liverpool, to China's booming megacities. He reveals how every building - from the Parthenon to the Great Mosque of Damascus to a typical Georgian house - was influenced by the energy available to its architects, and why this matters. Today architecture consumes so much energy that 40% of the world's greenhouse gas emissions come from the construction and running of buildings. If we are to avoid catastrophic climate change then now, more than ever, we need beautiful but also intelligent buildings, and to retrofit - not demolish - those that remain. Both a celebration of human ingenuity and a passionate call for greater sustainability, this is a history of architecture for our times.
This book provides a methodological framework to set properly the thermal enhancement and energy efficiency in historical buildings during a renovation process. It describes the unique thermal features of historical properties, closely examining how the building materials, structural elements, and state of conservation can impact energy efficiency, including sample calculations and results. It also describes means and aims of several fundamental steps to improve energy efficiency in historical buildings with an experimentation on a case study. This timely text also introduces leading-edge technologies for enhancing the energy performance of historical buildings, including the potential for integration of co- ad tri-generation though micro-turbines, photovoltaics and solar collectors and their compatibility with architectural preservation.
This book highlights selected papers presented during the bi-annual World Renewable Energy Network’s 2019 Med Green Forum. This international forum highlights the importance of growing renewable energy applications in two main sectors: Electricity Generation and Sustainable Building. The papers highlight the most current research and technological breakthroughs illustrating the viability of using renewable energy to satisfy energy needs. Coverage includes a broad range of renewable energy technologies and applications in all sectors – electricity production, heating and cooling, agricultural applications, water desalination, industrial applications, and transport. Presents leading-edge research in green building, sustainable architecture, and renewable energy; Covers a broad range of renewable energy technologies and applications in all sectors; Contains case studies and examples to enhance practical application of the technologies presented.
Building Information Modelling (BIM) is being debated, tested and implemented wherever you look across the built environment sector. This book is about Heritage Building Information Modelling (HBIM), which necessarily differs from the commonplace applications of BIM to new construction. Where BIM is being used, the focus is still very much on design and construction. However, its use as an operational and management tool for existing buildings, particularly heritage buildings, is lagging behind. The first of its kind, this book aims to clearly define the scope for HBIM and present cutting-edge research findings alongside international case studies, before outlining challenges for the future of HBIM research and practice. After an extensive introduction to HBIM, the core themes of the book are arranged into four parts: Restoration philosophies in practice Data capture and visualisation for maintenance and repair Building performance Stakeholder engagement This book will be a key reference for built environment practitioners, researchers, academics and students engaged in BIM, HBIM, building energy modelling, building surveying, facilities management and heritage conservation more widely.
This book presents the outcomes of the symposium “NEW METROPOLITAN PERSPECTIVES,” held at Mediterranea University, Reggio Calabria, Italy on May 26–28, 2020. Addressing the challenge of Knowledge Dynamics and Innovation-driven Policies Towards Urban and Regional Transition, the book presents a multi-disciplinary debate on the new frontiers of strategic and spatial planning, economic programs and decision support tools in connection with urban–rural area networks and metropolitan centers. The respective papers focus on six major tracks: Innovation dynamics, smart cities and ICT; Urban regeneration, community-led practices and PPP; Local development, inland and urban areas in territorial cohesion strategies; Mobility, accessibility and infrastructures; Heritage, landscape and identity;and Risk management,environment and energy. The book also includes a Special Section on Rhegion United Nations 2020-2030. Given its scope, the book will benefit all researchers, practitioners and policymakers interested in issues concerning metropolitan and marginal areas.
Cost-Effective Energy Efficient Building Retrofitting:Materials, Technologies, Optimization and Case Studies provides essential knowledge for civil engineers, architects, and other professionals working in the field of cost-effective energy efficient building retrofitting. The building sector is responsible for high energy consumption and its global demand is expected to grow as each day there are approximately 200,000 new inhabitants on planet Earth. The majority of electric energy will continue to be generated from the combustion of fossil fuels releasing not only carbon dioxide, but also methane and nitrous oxide. Energy efficiency measures are therefore crucial to reduce greenhouse gas emissions of the building sector. Energy efficient building retrofitting needs to not only be technically feasible, but also economically viable. New building materials and advanced technologies already exist, but the knowledge to integrate all active components is still scarce and far from being widespread among building industry stakeholders. - Emphasizes cost-effective methods for the refurbishment of existing buildings, presenting state-of-the-art technologies - Includes detailed case studies that explain various methods and Net Zero Energy - Explains optimal analysis and prioritization of cost effective strategies
This book comprises a selection of the top contributions presented at the second international conference “Smart and Sustainable Planning for Cities and Regions 2017”, held in March 2017 in Bolzano, Italy. Featuring forty-six papers by policy-makers, academics and consultants, it discusses current groundbreaking research in smart and sustainable planning, including the progress made in overcoming cities’ challenges towards improving the quality of life. Climate change adaptation and mitigation of global warming, generally identified as drivers of global policies, are just the “tip of the iceberg” when it comes to smart energy transition. Indeed, equally relevant towards this current transformation – and key topics in this volume – are ICTs, public spaces and society; next economy for the city; strategies and actions for good governance; urban-rural innovation; rethinking mobility. The book’s depth in understanding and insightfulness in re-thinking demonstrate the breaking of new ground in smart and sustainable planning. A new ground that policy-makers, academics and consultants may build upon as a bedrock for smart and sustainable planning.
This unique volume offers insights from renowned experts in energy efficient building from the world over, providing a multi-faceted overview of the state-of-the-art in energy efficient architecture. It opens by defining what constitutes a sustainable building, suggesting bases for sorely needed benchmarks, then explains the most important techniques and tools available to engineers and architects exploring green building technologies. It covers such pivotal issues as daylighting, LED lighting, integrating renewables such as solar thermal and cooling, retrofitting, LEED and similar certification efforts, passive houses, net-zero and close-zero structures, water recycling, and much more. Highlighting best practices for commercial buildings and private homes, in widely varied climates and within vastly different socio-economic contexts, this illustrated reference will guide architects and engineers in making sustainable choices in building materials and methods. - Explains the best methods and materials to support energy efficient building - Features case studies by experts from a dozen countries, demonstrating how sustainable architecture can be achieved in varied climates and economies - Covers both new constructions and retrofitting of existing structures