Highly Integrated Gate Drivers for Si and GaN Power Transistors

Highly Integrated Gate Drivers for Si and GaN Power Transistors

Author: Achim Seidel

Publisher: Springer Nature

Published: 2021-03-31

Total Pages: 137

ISBN-13: 3030689409

DOWNLOAD EBOOK

This book explores integrated gate drivers with emphasis on new gallium nitride (GaN) power transistors, which offer fast switching along with minimum switching losses. It serves as a comprehensive, all-in-one source for gate driver IC design, written in handbook style with systematic guidelines. The authors cover the full range from fundamentals to implementation details including topics like power stages, various kinds of gate drivers (resonant, non-resonant, current-source, voltage-source), gate drive schemes, driver supply, gate loop, gate driver power efficiency and comparison silicon versus GaN transistors. Solutions are presented on the system and circuit level for highly integrated gate drivers. Coverage includes miniaturization by higher integration of subfunctions onto the IC (buffer capacitors), as well as more efficient switching by a multi-level approach, which also improves robustness in case of extremely fast switching transitions. The discussion also includes a concept for robust operation in the highly relevant case that the gate driver is placed in distance to the power transistor. All results are widely applicable to achieve highly compact, energy efficient, and cost-effective power electronics solutions.​


GaN Transistors for Efficient Power Conversion

GaN Transistors for Efficient Power Conversion

Author: Alex Lidow

Publisher: John Wiley & Sons

Published: 2019-08-12

Total Pages: 518

ISBN-13: 1119594421

DOWNLOAD EBOOK

An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.


Power GaN Devices

Power GaN Devices

Author: Matteo Meneghini

Publisher: Springer

Published: 2016-09-08

Total Pages: 383

ISBN-13: 3319431994

DOWNLOAD EBOOK

This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.


Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Author: Gaudenzio Meneghesso

Publisher: Springer

Published: 2018-05-12

Total Pages: 242

ISBN-13: 331977994X

DOWNLOAD EBOOK

This book demonstrates to readers why Gallium Nitride (GaN) transistors have a superior performance as compared to the already mature Silicon technology. The new GaN-based transistors here described enable both high frequency and high efficiency power conversion, leading to smaller and more efficient power systems. Coverage includes i) GaN substrates and device physics; ii) innovative GaN -transistors structure (lateral and vertical); iii) reliability and robustness of GaN-power transistors; iv) impact of parasitic on GaN based power conversion, v) new power converter architectures and vi) GaN in switched mode power conversion. Provides single-source reference to Gallium Nitride (GaN)-based technologies, from the material level to circuit level, both for power conversions architectures and switched mode power amplifiers; Demonstrates how GaN is a superior technology for switching devices, enabling both high frequency, high efficiency and lower cost power conversion; Enables design of smaller, cheaper and more efficient power supplies.


Springer Handbook of Semiconductor Devices

Springer Handbook of Semiconductor Devices

Author: Massimo Rudan

Publisher: Springer Nature

Published: 2022-11-10

Total Pages: 1680

ISBN-13: 3030798275

DOWNLOAD EBOOK

This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.


Wide Bandgap Power Semiconductor Packaging

Wide Bandgap Power Semiconductor Packaging

Author: Katsuaki Suganuma

Publisher: Woodhead Publishing

Published: 2018-05-28

Total Pages: 242

ISBN-13: 0081020953

DOWNLOAD EBOOK

Wide Bandgap Power Semiconductor Packaging: Materials, Components, and Reliability addresses the key challenges that WBG power semiconductors face during integration, including heat resistance, heat dissipation and thermal stress, noise reduction at high frequency and discrete components, and challenges in interfacing, metallization, plating, bonding and wiring. Experts on the topic present the latest research on materials, components and methods of reliability and evaluation for WBG power semiconductors and suggest solutions to pave the way for integration. As wide bandgap (WBG) power semiconductors, SiC and GaN, are the latest promising electric conversion devices because of their excellent features, such as high breakdown voltage, high frequency capability, and high heat-resistance beyond 200 C, this book is a timely resource on the topic. - Examines the key challenges of wide bandgap power semiconductor packaging at various levels, including materials, components and device performance - Provides the latest research on potential solutions, with an eye towards the end goal of system integration - Discusses key problems, such as thermal management, noise reduction, challenges in interconnects and substrates


Power Electronics in Renewable Energy Systems and Smart Grid

Power Electronics in Renewable Energy Systems and Smart Grid

Author: Bimal K. Bose

Publisher: John Wiley & Sons

Published: 2019-06-27

Total Pages: 801

ISBN-13: 1119515653

DOWNLOAD EBOOK

The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.