Highly Efficient Thermal Renewable Energy Systems

Highly Efficient Thermal Renewable Energy Systems

Author: Vikas Verma

Publisher: CRC Press

Published: 2024-05-21

Total Pages: 377

ISBN-13: 1040020518

DOWNLOAD EBOOK

The text comprehensively highlights the latest methodologies, models, techniques, and applications along with a description of modeling, optimization, and experimental works in the energy sector. It further explains key concepts such as finite element analysis tools, hybrid energy systems, mechanical components design, and optimization, solar coupled systems, and vertical heat exchanger. This book • Discusses the role and integration of solar, geothermal, and hydrogen‐based thermal energy storage (TES) technologies in different sectors for space heating and cooling applications. • Covers mechanical modeling and optimization of hybrid energy storage systems for performance improvement and focuses on hydrogen production, storage, and safety measures. • Explores the integration of IoT and global energy interaction technologies, highlighting their potential benefits in driving the transition toward a sustainable and resilient global energy system. • Explains different aspects of clean technologies such as batteries, fuel cells, ground energy storage, solar thermal system, and the role of green hydrogen in decarbonizing sectors like transportation and energy. • Showcases a clear idea of sustainable development using renewable energy, focusing on policymaking, challenges in transition from conventional to renewable energy, and future directions in energy sector. It is primarily written for senior undergraduates and graduate students, and academic researchers in the fields of mechanical engineering, production engineering, industrial engineering, and environmental engineering.


Low-Temperature Energy Systems with Applications of Renewable Energy

Low-Temperature Energy Systems with Applications of Renewable Energy

Author: Andriy Redko

Publisher: Academic Press

Published: 2019-10-23

Total Pages: 396

ISBN-13: 0128166029

DOWNLOAD EBOOK

Low-Temperature Energy Systems with Applications of Renewable Energy investigates a wide variety of low-temperature energy applications in residential, commercial, institutional, and industrial areas. It addresses the basic principles that form the groundwork for more efficient energy conversion processes and includes detailed practical methods for carrying out these critical processes. This work considers new directions in the engineering use of technical thermodynamics and energy, including more in-depth studies of the use of renewable sources, and includes worked numerical examples, review questions, and practice problems to allow readers to test their own comprehension of the material. With detailed explanations, methods, models, and algorithms, Low-Temperature Energy Systems with Applications of Renewable Energy is a valuable reference for engineers and scientists in the field of renewable energy, as well as energy researchers and academics. - Features end-of chapter review sections with questions and exercises for practical study and utilization. - Presents methods for a great variety of energy applications to improve their energy operations. - Applies real-world data to demonstrate the impact of low-temperature energy systems on renewable energy use today.


Design and Performance Optimization of Renewable Energy Systems

Design and Performance Optimization of Renewable Energy Systems

Author: Mamdouh Assad

Publisher: Academic Press

Published: 2021-01-12

Total Pages: 319

ISBN-13: 0128232323

DOWNLOAD EBOOK

Design and Performance Optimization of Renewable Energy Systems provides an integrated discussion of issues relating to renewable energy performance design and optimization using advanced thermodynamic analysis with modern methods to configure major renewable energy plant configurations (solar, geothermal, wind, hydro, PV). Vectors of performance enhancement reviewed include thermodynamics, heat transfer, exergoeconomics and neural network techniques. Source technologies studied range across geothermal power plants, hydroelectric power, solar power towers, linear concentrating PV, parabolic trough solar collectors, grid-tied hybrid solar PV/Fuel cell for freshwater production, and wind energy systems. Finally, nanofluids in renewable energy systems are reviewed and discussed from the heat transfer enhancement perspective. Reviews the fundamentals of thermodynamics and heat transfer concepts to help engineers overcome design challenges for performance maximization Explores advanced design and operating principles for solar, geothermal and wind energy systems with diagrams and examples Combines detailed mathematical modeling with relevant computational analyses, focusing on novel techniques such as artificial neural network analyses Demonstrates how to maximize overall system performance by achieving synergies in equipment and component efficiency


Highly Efficient Thermal Renewable Energy Systems

Highly Efficient Thermal Renewable Energy Systems

Author: Vikas Verma

Publisher:

Published: 2024-05-21

Total Pages: 0

ISBN-13: 9781032595641

DOWNLOAD EBOOK

The text comprehensively highlights the latest methodologies, models, techniques, and applications along with a description of modeling, optimization, and experimental works in the energy sector.


Sustainable Technologies for Energy Efficient Buildings

Sustainable Technologies for Energy Efficient Buildings

Author: Chandan Swaroop Meena

Publisher: CRC Press

Published: 2024-07-24

Total Pages: 428

ISBN-13: 1040087914

DOWNLOAD EBOOK

The text begins by discussing the sustainable buildings, energy efficient technologies, advanced materials, advances in renewable energy for building sector, green intelligent infrastructure, policies on sustainable infrastructure, and life cycle assessment. It further presents design considerations, challenges, and applications of net zero energy buildings with a global perspective. The book covers renewable energy technologies for energy-efficient buildings. This book: Discusses the importance of developing new materials for Energy and Heat Transfer Optimization in sustainable buildings and Life Cycle Assessment of Sustainable Building Materials. Investigates the city gas system, sustainable smart cities infrastructure, and Data Mining Techniques in Green Building for Evaluation of energy Cost, Grades and Adoption. Highlights the development and application Net Zero Energy Buildings, Energy Policies and Infrastructure Requirements, Building Performance Prediction & Optimization, and Energy Planning and Thermal Comfort in Buildings Presents renewable energy policies, Social, Economic, and Environmental Issues Associated with Sustainable Buildings, and Emerging Trends in Smart Green Building Technologies. Covers Energy-Efficient Urban Infrastructure, Earth-Air Heat Exchanger, and Retrofitting of existing buildings to achieve energy efficient buildings. It is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of energy engineering, environmental science and engineering, materials science, mechanical engineering, and civil engineering.


Energy Efficient Vehicles

Energy Efficient Vehicles

Author: Varun Pratap Singh

Publisher: CRC Press

Published: 2024-04-29

Total Pages: 350

ISBN-13: 1040009107

DOWNLOAD EBOOK

The text discusses energy-efficient vehicles as an essential element of sustainable transportation. The text highlights the social, economic, and environmental benefits associated with energy-efficient automobiles, which effectively solve the issue of greenhouse gas emissions, improve air quality, boost energy security, and promote zero-emission. The energy-efficient technologies for transportation, accessibility and safety of the transport system, environmental footprint, health impact, economic development, and social growth are the central theme of the book. It further presents future integrated mobility-energy systems and sustainability indicators. This book: Examines policies, challenges, and the latest developments in the field of sustainable mobility. Discusses the latest advances in the field of energy storage systems, batteries, image processing, obstacle identification, and automatic gear trains. Highlights the safety, security, and risk management related to sustainable transportation, covering zero emissions and sustainability indicators. Presents electric vehicle grid integration and infrastructure for e-vehicle charging. Aims to provide an overview of various aspects of EV, HEV, ITS, and vehicular network deployment design, encompassing the technological advancements, challenges, and opportunities associated with this rapidly evolving field. Understanding the transportation needs and preferences of youth populations in shaping transportation policy and promoting sustainable urban development to design transportation systems that are efficient, equitable, and environmentally sustainable. Synergize exploration related to the various properties and functionalities through extensive theoretical and numerical modeling present in the energy sector. This book is primarily written for senior undergraduate, graduate students, and academic researchers in fields including mechanical engineering, industrial engineering, automotive engineering, manufacturing engineering, and environmental engineering.


Handbook of Clean Energy Systems, 6 Volume Set

Handbook of Clean Energy Systems, 6 Volume Set

Author: Jinyue Yan

Publisher: John Wiley & Sons

Published: 2015-06-22

Total Pages: 4038

ISBN-13: 1118388585

DOWNLOAD EBOOK

The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.


Nanofluids Technology for Thermal Sciences and Engineering

Nanofluids Technology for Thermal Sciences and Engineering

Author: Mukesh Kumar Awasthi

Publisher: CRC Press

Published: 2024-08-28

Total Pages: 350

ISBN-13: 1040107141

DOWNLOAD EBOOK

This text highlights how nanofluids can be used in thermal solutions across multiple industries, including electronics, energy, and manufacturing. It emphasizes the enhanced heat transfer properties of nanofluids and their potential to significantly improve the efficiency of heat exchange processes. This book discusses topics such as nanoparticle synthesis, nanofluid testing, performance enhancement using nanofluids, thermal behavior of hybrid nanofluids, Brinkman equation in nanofluids and safety considerations in nano fluid‐based systems. This book: • Discusses the recent innovation, technological development of nanofluids and explores nanoparticle synthesis and characterization for nanofluid development. • Offers a comprehensive understanding of nanofluid technology and nanofluid for aerospace application, covering diverse topics from fundamental properties to advanced research frontiers in nanofluids for thermal engineering. • Includes real‐world case studies and practical techniques that will help the readers to apply nanofluid technology in various thermal engineering scenarios. • Covers heat exchanger performance improvement with nanofluids, hybrid nanofluids, Flow of Newtonian and Non‐Newtonian hybrid Nanofluid, and oil‐based Tri‐hybrid Nanofluid. • Explains experimental techniques for nanofluid testing and validation and presents safety and environmental considerations in nanofluid‐based systems. It is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of manufacturing engineering, industrial engineering, production engineering, mechanical engineering, automotive engineering, and aerospace engineering.


Solar Hybrid Systems

Solar Hybrid Systems

Author: Ahmet Aktas

Publisher: Academic Press

Published: 2021-04-23

Total Pages: 372

ISBN-13: 0323885004

DOWNLOAD EBOOK

Solar Hybrid Systems: Design and Application discusses the key power generation characteristics of solar systems and explores the growing need for hybrid systems. The authors use real-life examples to explain the disadvantages of solar systems without hybridization and to demonstrate the various applications hybrid solar systems can be used for, paying special attention to its integration with energy storage systems. The book also discusses the impact of hybridization and how this can improve power generation quality along with investigating novel and advanced hybrid solar systems. This is a useful reference for engineers and researchers involved in both the development and application of hybrid solar systems, and features topics such as solutions for the intermittence of renewable energy sources; on-gird and off-grid solar hybrid systems; the simulation, design and application of hybrid solar systems; the role of energy storage systems in solar hybrid applications; and the future of electric vehicles using solar hybrid systems. - Demonstrates the benefits of hybrid solar systems and why they are needed - Features practical advice on designing hybrid solar systems - Includes key findings and real-world examples to illustrate the applications of hybrid solar systems


Modelling, Simulation and Control of Thermal Energy Systems

Modelling, Simulation and Control of Thermal Energy Systems

Author: Kwang Y. Lee

Publisher: MDPI

Published: 2020-11-03

Total Pages: 228

ISBN-13: 3039433601

DOWNLOAD EBOOK

Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.