Higher Homotopy Structures in Topology and Mathematical Physics

Higher Homotopy Structures in Topology and Mathematical Physics

Author: James D. Stasheff

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 338

ISBN-13: 082180913X

DOWNLOAD EBOOK

Since the work of Stasheff and Sugawara in the 1960s on recognition of loop space structures on $H$-spaces, the notion of higher homotopies has grown to be a fundamental organizing principle in homotopy theory, differential graded homological algebra and even mathematical physics. This book presents the proceedings from a conference held on the occasion of Stasheff's 60th birthday at Vassar in June 1996. It offers a collection of very high quality papers and includes some fundamental essays on topics that open new areas.


Homotopy Theory of Higher Categories

Homotopy Theory of Higher Categories

Author: Carlos Simpson

Publisher: Cambridge University Press

Published: 2011-10-20

Total Pages: 653

ISBN-13: 1139502190

DOWNLOAD EBOOK

The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.


Higher Structures in Geometry and Physics

Higher Structures in Geometry and Physics

Author: Alberto S. Cattaneo

Publisher: Springer Science & Business Media

Published: 2010-11-25

Total Pages: 371

ISBN-13: 081764735X

DOWNLOAD EBOOK

This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. The volume is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.


Nonabelian Algebraic Topology

Nonabelian Algebraic Topology

Author: Ronald Brown

Publisher: JP Medical Ltd

Published: 2011

Total Pages: 714

ISBN-13: 9783037190838

DOWNLOAD EBOOK

The main theme of this book is that the use of filtered spaces rather than just topological spaces allows the development of basic algebraic topology in terms of higher homotopy groupoids; these algebraic structures better reflect the geometry of subdivision and composition than those commonly in use. Exploration of these uses of higher dimensional versions of groupoids has been largely the work of the first two authors since the mid 1960s. The structure of the book is intended to make it useful to a wide class of students and researchers for learning and evaluating these methods, primarily in algebraic topology but also in higher category theory and its applications in analogous areas of mathematics, physics, and computer science. Part I explains the intuitions and theory in dimensions 1 and 2, with many figures and diagrams, and a detailed account of the theory of crossed modules. Part II develops the applications of crossed complexes. The engine driving these applications is the work of Part III on cubical $\omega$-groupoids, their relations to crossed complexes, and their homotopically defined examples for filtered spaces. Part III also includes a chapter suggesting further directions and problems, and three appendices give accounts of some relevant aspects of category theory. Endnotes for each chapter give further history and references.


Spectral Problems in Geometry and Arithmetic

Spectral Problems in Geometry and Arithmetic

Author: Thomas Branson

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 190

ISBN-13: 0821809407

DOWNLOAD EBOOK

These are the proceedings of the NSF-CBMS Conference on "Spectral Problems in Geometry and Arithmetic" held at the University of Iowa. The principal speaker was Peter Sarnak, who has been a central contributor to developments in this field. The volume approaches the topic from the geometric, physical, and number theoretic points of view. The remarkable new connections among seemingly disparate mathematical and scientific disciplines have surprised even veterans of the physical mathematics renaissance forged by gauge theory in the 1970s. Numerical experiments show that the local spacing between zeros of the Riemann zeta function is modelled by spectral phenomena: the eigenvalue distributions of random matrix theory, in particular the Gaussian unitary ensemble (GUE). Related phenomena are from the point of view of differential geometry and global harmonic analysis. Elliptic operators on manifolds have (through zeta function regularization) functional determinants, which are related to functional integrals in quantum theory. The search for critical points of this determinant brings about extremely subtle and delicate sharp inequalities of exponential type. This indicates that zeta functions are spectral objects-and even physical objects. This volume demonstrates that zeta functions are also dynamic, chaotic, and more.


Nonlinear Partial Differential Equations

Nonlinear Partial Differential Equations

Author: Gui-Qiang Chen

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 323

ISBN-13: 0821811967

DOWNLOAD EBOOK

This volume is a collection of original research papers and expository articles stemming from the scientific program of the Nonlinear PDE Emphasis Year held at Northwestern University (Evanston, IL) in March 1998. The book offers a cross-section of the most significant recent advances and current trends and directions in nonlinear partial differential equations and related topics. The book's contributions offer two perspectives. There are papers on general analytical treatment of the theory and papers on computational methods and applications originating from significant realistic mathematical models of natural phenomena. Also included are articles that bridge the gap between these two perspectives, seeking synergistic links between theory and modeling and computation. The volume offers direct insight into recent trends in PDEs. This volume is also available on the Web. Those who purchase the print edition can gain free access by going to www.ams.org/conm/.


Advances in Stochastic Inequalities

Advances in Stochastic Inequalities

Author: Theodore Preston Hill

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 226

ISBN-13: 0821810863

DOWNLOAD EBOOK

Contains 15 articles based on invited talks given at an AMS Special Session on 'Stochastic Inequalities and Their Applications' held at Georgia Institute of Technology (Atlanta). This book includes articles that offer a comprehensive picture of this area of mathematical probability and statistics.


Nonlinear Wave Equations

Nonlinear Wave Equations

Author: Yan Guo

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 216

ISBN-13: 0821820710

DOWNLOAD EBOOK

This volume presents original research papers and expository articles from the conference in honour of Walter A. Strauss's 60th birthday, held at Brown University in Providence, Rhode Island. The book offers a collection of original papers and expository articles mainly devoted to the study of nonlinear wave equations. The articles cover a wide range of topics, including scattering theory, dispersive waves, classical field theory, mathematical fluid dynamics, kinetic theory, stability theory, and variational methods. The book offers a cross-section of current trends and research directions in the study of nonlinear wave equations and related topics.