Higher-Dimensional Algebraic Geometry

Higher-Dimensional Algebraic Geometry

Author: Olivier Debarre

Publisher: Springer Science & Business Media

Published: 2001-06-26

Total Pages: 252

ISBN-13: 9780387952277

DOWNLOAD EBOOK

The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.


Classification of Higher Dimensional Algebraic Varieties

Classification of Higher Dimensional Algebraic Varieties

Author: Christopher D. Hacon

Publisher: Springer Science & Business Media

Published: 2011-02-02

Total Pages: 206

ISBN-13: 3034602901

DOWNLOAD EBOOK

Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.


Arithmetic of Higher-Dimensional Algebraic Varieties

Arithmetic of Higher-Dimensional Algebraic Varieties

Author: Bjorn Poonen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 292

ISBN-13: 0817681701

DOWNLOAD EBOOK

This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.


Geometry of Higher Dimensional Algebraic Varieties

Geometry of Higher Dimensional Algebraic Varieties

Author: Thomas Peternell

Publisher: Springer Science & Business Media

Published: 1997-03-20

Total Pages: 228

ISBN-13: 9783764354909

DOWNLOAD EBOOK

This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsin stitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T.


Rational Curves on Algebraic Varieties

Rational Curves on Algebraic Varieties

Author: Janos Kollar

Publisher: Springer Science & Business Media

Published: 2013-04-09

Total Pages: 330

ISBN-13: 3662032767

DOWNLOAD EBOOK

The aim of this book is to provide an introduction to the structure theory of higher dimensional algebraic varieties by studying the geometry of curves, especially rational curves, on varieties. The main applications are in the study of Fano varieties and of related varieties with lots of rational curves on them. This Ergebnisse volume provides the first systematic introduction to this field of study. The book contains a large number of examples and exercises which serve to illustrate the range of the methods and also lead to many open questions of current research.


Higher-Dimensional Algebraic Geometry

Higher-Dimensional Algebraic Geometry

Author: Olivier Debarre

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 245

ISBN-13: 147575406X

DOWNLOAD EBOOK

The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.


How Surfaces Intersect in Space

How Surfaces Intersect in Space

Author: J. Scott Carter

Publisher: World Scientific

Published: 1995

Total Pages: 344

ISBN-13: 9789810220662

DOWNLOAD EBOOK

This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.


Algebraic Geometry

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 511

ISBN-13: 1475738498

DOWNLOAD EBOOK

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.


Birational Geometry of Algebraic Varieties

Birational Geometry of Algebraic Varieties

Author: Janos Kollár

Publisher: Cambridge University Press

Published: 2010-03-24

Total Pages: 254

ISBN-13: 9780511662560

DOWNLOAD EBOOK

One of the major discoveries of the past two decades in algebraic geometry is the realization that the theory of minimal models of surfaces can be generalized to higher dimensional varieties. This generalization, called the minimal model program, or Mori's program, has developed into a powerful tool with applications to diverse questions in algebraic geometry and beyond. This book provides the first comprehensive introduction to the circle of ideas developed around the program, the prerequisites being only a basic knowledge of algebraic geometry. It will be of great interest to graduate students and researchers working in algebraic geometry and related fields.


High-dimensional Knot Theory

High-dimensional Knot Theory

Author: Andrew Ranicki

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 669

ISBN-13: 3662120119

DOWNLOAD EBOOK

Bringing together many results previously scattered throughout the research literature into a single framework, this work concentrates on the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory.