In High Throughput Screening, leading scientists and researchers expert in molecular discovery explain the diverse technologies and key techniques used in HTS and demonstrate how they can be applied generically. Writing to create precisely the introductory guidebook they wish had been available when they started in HTS, these expert seasoned authors illuminate the HTS process with richly detailed tutorials on the biological techniques involved, the management of compound libraries, and the automation and engineering approaches needed. Extensive discussions provide readers with all those key elements of pharmacology, molecular biology, enzymology, and biochemistry that will ensure the identification of suitable targets and screens, and detail the technology necessary to mine millions of data points for meaningful knowledge.
A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.
Frontiers in Computational Chemistry presents contemporary research on molecular modeling techniques used in drug discovery and the drug development process: computer aided molecular design, drug discovery and development, lead generation, lead optimization, database management, computer and molecular graphics, and the development of new computational methods or efficient algorithms for the simulation of chemical phenomena including analyses of biological activity. The third volume of this series features four chapters covering in silico approaches to computer aided drug design, modeling of platinum and adjuvant anti-cancer drugs, allostery in proteins and studies on the theory of chemical space in electron systems.
This first overview of mass spectrometry-based pharmaceutical analysis is the key to improved high-throughput drug screening, rational drug design and analysis of multiple ligand-target interactions. The ready reference opens with a general introduction to the use of mass spectrometry in pharmaceutical screening, followed by a detailed description of recently developed analytical systems for use in the pharmaceutical laboratory. Applications range from simple binding assays to complex screens of biological activity and systems containing multiple targets or ligands -- all highly relevant techniques in the early stages in drug discovery, from target characterization to hit and lead finding.
Highlights the importance and benefit of mass spectrometry-based metabolomics for identifying biomarkers that accurately screen for potential biomarkers of diseases Mass spectrometry-based metabolomics offer new opportunities for biomarker discovery in complex diseases and may provide pathological understanding of diseases beyond traditional technologies. It is the systematic analysis of low-molecular-weight metabolites in biological samples and has been applied to discovering and identifying the perturbed pathways. Currently, mass spectrometry-based metabolomics has become an important tool in clinical research and the diagnosis of human disease. Mass Spectrometry-Based Metabolomics in Clinical and Herbal Medicines comprehensively presents the current state, challenges, and applications of high-throughput mass spectrometry-based metabolomics such as metabolites analysis, biomarker discovery, technical challenges, discovery of natural product, mechanism interpretation of action, discovery of active ingredients, clinical application and precision medicine, and enhancing their biomedical value in a real world of biomedicine, shedding light on the potential for spectrometry-based metabolomics. It highlights the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. Each chapter has been laid out with introduction, method, up-to-date literature, identification of biomarker, and applications Covers the current state, challenges, and applications of high-throughput mass spectrometry-based metabolomics in the discovery of biomarker, active ingredients, natural product, etc. Constitutes a unique and indispensable practical guide for any phytochemistry or related laboratory, and provides hands-on description of new techniques Provides a guide for new practitioners of pharmacologists, pharmacological scholars, drug developers, botanist, researchers of traditional medicines. Mass Spectrometry-Based Metabolomics in Clinical and Herbal Medicines provides a landmark of mass spectrometry-based metabolomics research and a beneficial guideline to graduate students and researchers in academia, industry, and technology transfer organizations in all biomedical science fields.
High-Throughput Mass Spectrometry in Drug Discovery Apply mass spectrometry to every phase of new drug discovery with this cutting-edge guide Mass spectrometry is a technique that identifies and characterizes compounds based on their mass — the fundamental molecular characteristic. It has become an invaluable analytical tool in various disciplines, industries, and research fields. It has become particularly central to new drug discovery and development, which broadly deploys mass spectrometry at every phase. The pharmaceutical industry has become one of the main drivers of technological development in mass spectrometry. High-Throughput Mass Spectrometry in Drug Discovery offers a comprehensive introduction to mass spectrometry and its applications in pharmaceutical discovery. It covers the foundational principles and science of mass spectrometry before moving to specific experimental methods and their applications at various stages of drug discovery. Its thorough treatment and detailed guidance make it an invaluable tool for pharmaceutical research and development. High-Throughput Mass Spectrometry in Drug Discovery readers will also find: Detailed analysis of techniques, including label-free screening, synthetic reaction optimization, and more An authorial team with extensive combined experience in research and industrial applications Technical strategies with the potential to accelerate quantitative bioanalysis in drug discovery High-Throughput Mass Spectrometry in Drug Discovery is essential for analytical, bioanalytical, and medicinal chemists working in the pharmaceutical industry and for any researchers and graduate students interested in drug discovery and development.
Comprehensive Natural Products III, Third Edition, Seven Volume Set updates and complements the previous two editions, including recent advances in cofactor chemistry, structural diversity of natural products and secondary metabolites, enzymes and enzyme mechanisms and new bioinformatics tools. Natural products research is a dynamic discipline at the intersection of chemistry and biology concerned with isolation, identification, structure elucidation, and chemical characteristics of naturally occurring compounds such as pheromones, carbohydrates, nucleic acids and enzymes. This book reviews the accumulated efforts of chemical and biological research to understand living organisms and their distinctive effects on health and medicine and to stimulate new ideas among the established natural products community. Provides readers with an in-depth review of current natural products research and a critical insight into the future direction of the field Bridges the gap in knowledge by covering developments in the field since the second edition published in 2010 Split into 7 sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Ensures that the knowledge within is easily understood by and applicable to a large audience
Mass Spectrometry in Drug Discovery summarizes the theory, instrumentation, techniques, and application of mass spectrometry and atmospheric pressure ionization to screening, evaluating, and improving the performance and quality of drug candidates. It provides time- and cost-efficient approaches for the generation and analysis of effective pharmaceuticals, covers advances in combinatorial chemistry, molecular biology, bioanalysis automation, and computing, and demonstrates the use of mass spectrometry in the assessment of disease states, drug targets, and potential drug agents.
"High Throughput Screening (HTS) is one of several hit identification approaches that are part of a developing and evolving toolbox for the discovery of pharmaceutical start points. HTS remains one of the most successful approaches, and therefore an important foundation of drug discovery. In High Throughput Screening: Methods, Techniques and Applications, leading industrial and academic experts in screening and drug discovery explain key technologies and methods while demonstrating how they can be applied to successful hit identification. Describing both traditional and emerging methods in detail, this book provides an overview of these methods to the reader that will serve both those new to the field and expert scientists alike. High Throughput Screening: Methods, Techniques and Applications provides readers with an outline of key elements in the areas of assay development, detailed descriptions of a range of both biochemical and cell-based screening methodologies and strategies, as well as highlighting important steps in data analysis. By describing the basic principles of methods commonly used in HTS, High Throughput Screening: Methods, Techniques and Applications provides an illuminating introduction to HTS, capturing established good practice within the field, thereby imparting both the industrial and academic researcher with the knowledge required to work effectively in both today's and the hit identification laboratories of the future"--
This timely reference discusses mass spectrometry in drug metabolism and pharmacokinetic studies. With contributions by professionals from the pharmaceutical industry, this book begins with a review of current mass spectrometry techniques and applications, followed by discussions of various methods for using MS in drug metabolism studies and pharmacokinetics. Highlighting the critical importance of ADME studies for understanding how a drug is absorbed, distributed, metabolized, and excreted by the body, the book s focuses on the use of LC/MS and MALDI-MS. This is a valuable reference for scientists in the pharmaceutical industry, medicine, academia, and even those working in homeland defense.