Developments in High Temperature Corrosion and Protection of Materials

Developments in High Temperature Corrosion and Protection of Materials

Author: W Gao

Publisher: Elsevier

Published: 2008-04-09

Total Pages: 677

ISBN-13: 1845694252

DOWNLOAD EBOOK

High temperature corrosion is a phenomenon that occurs in components that operate at very high temperatures, such as gas turbines, jet engines and industrial plants. Engineers are constantly striving to understand and prevent this type of corrosion. This book examines the latest developments in the understanding of high temperature corrosion processes and protective oxide scales and coatings.Part one looks at high temperature corrosion. Chapters cover diffusion and solid state reactions, external and internal oxidation of alloys, metal dusting corrosion, tribological degradation, hot corrosion, and oxide scales on hot-rolled steel strips. Modern techniques for analysing high temperature oxidation and corrosion are also discussed. Part two discusses methods of protection using ceramics, composites, protective oxide scales and coatings. Chapters focus on layered ternary ceramics, alumina scales, Ti-Al intermetallic compounds, metal matrix composites, chemical vapour deposited silicon carbide, nanocrystalline coatings and thermal barrier coatings. Part three provides case studies illustrating some of the challenges of high temperature corrosion to industry and how they can be overcome. Case studies include the petrochemical industry, modern incinerators and oxidation processing of electronic materials.This book is a valuable reference tool for engineers who develop heat resistant materials, mechanical engineers who design and maintain high temperature equipment and plant, and research scientists and students who study high temperature corrosion and protection of materials. - Describes the latest developments in understanding high temperature corrosion - Presents the latest research by the leading innovators from around the globe - Case studies are provided to illustrate key points


High-temperature Corrosion of Engineering Alloys

High-temperature Corrosion of Engineering Alloys

Author: G. Y. Lai

Publisher: ASM International(OH)

Published: 1990

Total Pages: 256

ISBN-13:

DOWNLOAD EBOOK

The purpose of this book is to provide engineers with extensive up-to-date high-temperature corrosion data pertinent to real industrial problems. The focus is on commercial alloys and deals with oxidation; carburization and metal dusting; nitridation; halogen corrosion; sulfidation; ash/salt deposit corrosion; molten salt corrosion; molten metal corrosion.


Ultra-High Temperature Ceramics

Ultra-High Temperature Ceramics

Author: William G. Fahrenholtz

Publisher: John Wiley & Sons

Published: 2014-10-10

Total Pages: 601

ISBN-13: 111892441X

DOWNLOAD EBOOK

The first comprehensive book to focus on ultra-high temperature ceramic materials in more than 20 years Ultra-High Temperature Ceramics are a family of compounds that display an unusual combination of properties, including extremely high melting temperatures (>3000°C), high hardness, and good chemical stability and strength at high temperatures. Typical UHTC materials are the carbides, nitrides, and borides of transition metals, but the Group IV compounds (Ti, Zr, Hf) plus TaC are generally considered to be the main focus of research due to the superior melting temperatures and stable high-melting temperature oxide that forms in situ. Rather than focusing on the latest scientific results, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications broadly and critically combines the historical aspects and the state-of-the-art on the processing, densification, properties, and performance of boride and carbide ceramics. In reviewing the historic studies and recent progress in the field, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications provides: Original reviews of research conducted in the 1960s and 70s Content on electronic structure, synthesis, powder processing, densification, property measurement, and characterization of boride and carbide ceramics. Emphasis on materials for hypersonic aerospace applications such as wing leading edges and propulsion components for vehicles traveling faster than Mach 5 Information on materials used in the extreme environments associated with high speed cutting tools and nuclear power generation Contributions are based on presentations by leading research groups at the conference "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II" held May 13-19, 2012 in Hernstein, Austria. Bringing together disparate researchers from academia, government, and industry in a singular forum, the meeting cultivated didactic discussions and efforts between bench researchers, designers and engineers in assaying results in a broader context and moving the technology forward toward near- and long-term use. This book is useful for furnace manufacturers, aerospace manufacturers that may be pursuing hypersonic technology, researchers studying any aspect of boride and carbide ceramics, and practitioners of high-temperature structural ceramics.


High Temperature Corrosion of Ceramics

High Temperature Corrosion of Ceramics

Author: J.R. Blachere

Publisher: William Andrew

Published: 1989-12-31

Total Pages: 208

ISBN-13:

DOWNLOAD EBOOK

The information in this book is from a 1987 Dept. of Energy report of the same title. Materials investigated in this particular study are silica, alumina, silicon nitride and silicon carbide. In addition to the pure single crystals or CVD materials, typical engineering materials of various purities are included. No index. Annotation copyrighted by Book News, Inc., Portland, OR


Coatings for High-Temperature Structural Materials

Coatings for High-Temperature Structural Materials

Author: National Research Council

Publisher: National Academies Press

Published: 1996-05-13

Total Pages: 102

ISBN-13: 0309176026

DOWNLOAD EBOOK

This book assesses the state of the art of coatings materials and processes for gas-turbine blades and vanes, determines potential applications of coatings in high-temperature environments, identifies needs for improved coatings in terms of performance enhancements, design considerations, and fabrication processes, assesses durability of advanced coating systems in expected service environments, and discusses the required inspection, repair, and maintenance methods. The promising areas for research and development of materials and processes for improved coating systems and the approaches to increased coating standardization are identified, with an emphasis on materials and processes with the potential for improved performance, quality, reproducibility, or manufacturing cost reduction.


Ceramic Fibers and Coatings

Ceramic Fibers and Coatings

Author: Committee on Advanced Fibers for High-Temperature Ceramic Composites

Publisher: National Academies Press

Published: 1998-05-05

Total Pages: 112

ISBN-13: 0309569036

DOWNLOAD EBOOK

High-temperature ceramic fibers are the key components of ceramic matrix composites (CMCs). Ceramic fiber properties (strength, temperature and creep resistance, for example)-along with the debonding characteristics of their coatings-determine the properties of CMCs. This report outlines the state of the art in high-temperature ceramic fibers and coatings, assesses fibers and coatings in terms of future needs, and recommends promising avenues of research. CMCs are also discussed in this report to provide a context for discussing high-temperature ceramic fibers and coatings.