The workshop focussed on issues related to Bulk Processing and Applications, Structure and Flux Pinning as well as Thin Films. These issues are currently very critical to the development of these superconductors.Fifty-two papers authored by researchers from the United States and Japan were presented at the workshop. They reflect the state of the field in high-Tc superconductors and the direction in which the technology in these superconductors is moving. The papers also make accessible to interested scientists and engineers extremely valuable information on the progress achieved in applications in recent years.
Applications of superconductivity at the boiling temperature of liquid nitrogen continue to challenge physicists, materials scientists and engineers all over the world eight years after the discovery of high temperature superconductivity. The key to a solution of today's problems lies in the optimization of the defect structure in well-oriented oxide materials as well as in a fundamental understanding of the magnetic microstructures in the mixed state and how they are affected by the crystallographic nature ('dimensionality') of these materials. Fifteen invited overview lectures as well as approximately 150 contributed papers highlight the state of the art in this important field of superconductivity and review our current knowledge of critical currents in superconductors.
This workshop includes about 110 papers describing the flux pinning and related electromagnetic phenomena in superconductors. Various problems are argued on exotic properties of flux lines, flux dynamics, flux pinning mechanisms, critical current density and critical state phenomena in both high- and low-temperature superconductors.
These proceedings include 76 papers on vortex structure and dynamics, flux pinning, flux creep and melting, critical state phenomena, weak links as well as technical problems for fabrication of materials with high critical current density, for both high-temperature and low-temperature superconductors.
This book consists of over 600 selected descriptions and abstracts of books, book chapters, patents and journal articles from throughout the world dealing with this high-profile topic. Each citation contains complete bibliographic data plus key words. The entries are grouped under the headings of: Theory of Superconductivity; Superconducting Devices; Superconducting Properties of Materials; Applications of Superconductors: Author Index; Subject Index.
Since the First International Symposium on Superconductivity (ISS '88) was held in Nagoya, Japan in 1988, significant advances have been achieved in a wide range of high temperature superconductivity research. Although the T c's of recently discovered oxide superconductors still do not exceed the record high value of 125K reported before that meeting, the enrichment in the variety of materials should prove useful to the investigation of the fundamental mechanism of superconductiv ity in these exotic materials. The discovery of the n-type superconducting oxides proved to oppose the previously held empirical fact that the charge carriers in all oxide superconductors were holes. In addition, optimization of the charge carrier density has been established as a technique to improve the superconducting proper ties of the previously known oxide materials. Many new experimental and theoreti cal advances have been made in understanding both the fundamental and the applied aspects of high temperature superconductivity. In this latter area, various new processing techniques have been investigated, and the critical current densities and other significant parameters of both bulk and thin film oxide superconductors are rapidly being improved. At this exciting stage of research in high temperature superconductivity, it is extremely important to provide an opportunity for researchers from industry, academia, government and other institutions around the world to freely exchange information and thus contribute to the further advancement of research.