The development of high temperature superconductors is one of the major technological discoveries of this century. The impact and interactions from the scientific, technical, business and political aspects will be presented.
This volume contains the proceedings of a five-day NATO Advanced Research Workshop "On Three Levels, the mathematical physics of micro-, meso-, and macro phenomena," conducted from July 19 to 23 in Leuven, Belgium. The main purpose of the workshop was to bring together and to confront where relevant, classical and quantum approaches in the rigorous study of the relation between the various levels of physical description. The reader will find here discussions on a variety of topics involving a broad range of scales. For the micro-level, contributions are presented on models of reaction-diffusion pro cesses, quantum groups and quantum spin systems. The reports on quantum disorder, the quantum Hall effect, semi-classical approaches of wave mechanics and the random Schrodinger equation can be situated on the meso-level. Discussions on macroscopic quantum effects and large scale fluctuations are dealing with the macroscopic level of description. These three levels are however not independent and emphasis is put on relating these scales of description. This is especially the case for the contributions on kinetic and hydrodynamicallimits, the discussions on large deviations and the strong and weak coupling limits. The advisory board was composed of J.L. Lebowitz, J.T. Lewis and E.H. Lieb. The organizing committee was formed by Ph.A. Martin, G.L. Sewell, E.R. Speer and A.
This book describes all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, as well as in related fields, such as polymer science and lattice gauge theory. The authors give a succinct overview of simple sampling methods and develop the importance sampling method. In addition they introduce quantum Monte Carlo methods, aspects of simulations of growth phenomena and other systems far from equilibrium, and the Monte Carlo Renormalization Group approach to critical phenomena. The book includes many applications, examples, and current references, and exercises to help the reader.
This volume collects the proceedings of the 23rd International Course of Crystallography, entitled "X-ray and Neutron Dynamical Diffraction, Theory and Applications," which took place in the fascinating setting of Erice in Sicily, Italy. It was run as a NATO Advanced Studies Institute with A. Authier (France) and S. Lagomarsino (Italy) as codirectors, and L. Riva di Sanseverino and P. Spadon (Italy) as local organizers, R. Colella (USA) and B. K. Tanner (UK) being the two other members of the organizing committee. It was attended by about one hundred participants from twenty four different countries. Two basic theories may be used to describe the diffraction of radiation by crystalline matter. The first one, the so-called geometrical, or kinematical theory, is approximate and is applicable to small, highly imperfect crystals. It is used for the determination of crystal structures and describes the diffraction of powders and polycrystalline materials. The other one, the so-called dynamical theory, is applicable to perfect or nearly perfect crystals. For that reason, dynamical diffraction of X-rays and neutrons constitutes the theoretical basis of a great variety of applications such as: • the techniques used for the characterization of nearly perfect high technology materials, semiconductors, piezoelectric, electrooptic, ferroelectric, magnetic crystals, • the X-ray optical devices used in all modem applications of Synchrotron Radiation (EXAFS, High Resolution X-ray Diffractometry, magnetic and nuclear resonant scattering, topography, etc. ), and • X-ray and neutron interferometry.
The relationship between liquids and gases engaged the attention of a number of distinguished scientists in the mid 19th Century. In a definitive paper published in 1869, Thomas Andrews described experiments he performed on carbon dioxide and from which he concluded that a critical temperature exists below which liquids and gases are distinct phase
Presenting a variety of topics that are only briefly touched on in other texts, this book provides a thorough introduction to the techniques of field theory. Covering Feynman diagrams and path integrals, the author emphasizes the path integral approach, the Wilsonian approach to renormalization, and the physics of non-abelian gauge theory. It provides a thorough treatment of quark confinement and chiral symmetry breaking, topics not usually covered in other texts at this level. The Standard Model of particle physics is discussed in detail. Connections with condensed matter physics are explored, and there is a brief, but detailed, treatment of non-perturbative semi-classical methods. Ideal for graduate students in high energy physics and condensed matter physics, the book contains many problems,which help students practise the key techniques of quantum field theory.
Speech is the principal supporting medium of language. In this book Pierre-Yves Oudeyer considers how spoken language first emerged. He presents an original and integrated view of the interactions between self-organization and natural selection, reformulates questions about the origins ofspeech, and puts forward what at first sight appears to be a startling proposal - that speech can be spontaneously generated by the coupling of evolutionarily simple neural structures connecting perception and production. He explores this hypothesis by constructing a computational system to modelthe effects of linking auditory and vocal motor neural nets. He shows that a population of agents which used holistic and unarticulated vocalizations at the outset are inexorably led to a state in which their vocalizations have become discrete, combinatorial, and categorized in the same way by allgroup members. Furthermore, the simple syntactic rules that have emerged to regulate the combinations of sounds exhibit the fundamental properties of modern human speech systems.This original and fascinating account will interest all those interested in the evolution of speech.
This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small. Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience.