Particle Deposition and Aggregation

Particle Deposition and Aggregation

Author: M. Elimelech

Publisher: Elsevier

Published: 1998-08-07

Total Pages: 459

ISBN-13: 0080513573

DOWNLOAD EBOOK

Deposition and aggregation of small solid particles are encountered in many natural and industrial environments. Whether it be deposition of particles onto a surface immersed in a liquid suspension or aggregateion of individual particles, these processes are of enotmous significance. They are vital to the manufacture of magnetic tape, purification of water using packed bed filters, selective capture of solids, cells and macromolecular species, and many other applications. This book presents a unified approach to the measurement, modelling and simulation of these processes, bringing together the disciplines of colliod and surface chemistry, hydrodynamics, and experimental and computational methods. It will be required reading for graduates working in process and environmental engineering, postgraduates involved in industrial R & D and for all scientists wishing to gain a more detailed and realistic understanding of process conditions in these areas.


Radioactive Particles in the Environment

Radioactive Particles in the Environment

Author: International Atomic Energy Agency

Publisher:

Published: 2011

Total Pages: 0

ISBN-13: 9789201190109

DOWNLOAD EBOOK

Reports on the outcome of an IAEA coordinated research project in the area of measurement and characterization of radioactive particles in the environment. This publication summarizes the achievements and findings of the project participants and gives guidance for application of the techniques for evaluation of contaminated areas.


Recent Progress in Slow Sand and Alternative Biofiltration Processes

Recent Progress in Slow Sand and Alternative Biofiltration Processes

Author: Rolf Gimbel

Publisher: IWA Publishing

Published: 2006-03-31

Total Pages: 580

ISBN-13: 1843391201

DOWNLOAD EBOOK

Slow sand filtration is typically cited as being the first "engineered" process in drinking-water treatment. Proven modifications to the conventional slow sand filtration process, the awareness of induced biological activity in riverbank filtration systems, and the growth of oxidant-induced biological removals in more rapid-rate filters (e.g. biological activated carbon) demonstrate the renaissance of biofiltration as a treatment process that remains viable for both small, rural communities and major cities. Biofiltration is expected to become even more common in the future as efforts intensify to decrease the presence of disease-causing microorganisms and disinfection by-products in drinking water, to minimize microbial regrowth potential in distribution systems, and where operator skill levels are emphasized. Recent Progress in Slow Sand and Alternative Biofiltration Processes provides a state-of-the-art assessment on a variety of biofiltration systems from studies conducted around the world. The authors collectively represent a perspective from 23 countries and include academics, biofiltration system users, designers, and manufacturers. It provides an up-to-date perspective on the physical, chemical, biological, and operational factors affecting the performance of slow sand filtration (SSF), riverbank filtration (RBF), soil-aquifer treatment (SAT), and biological activated carbon (BAC) processes. The main themes are: comparable overviews of biofiltration systems; slow sand filtration process behavior, treatment performance and process developments; and alternative biofiltration process behaviors, treatment performances, and process developments.


Characterization, Modeling, Monitoring, and Remediation of Fractured Rock

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2021-01-29

Total Pages: 177

ISBN-13: 0309373727

DOWNLOAD EBOOK

Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.


Biochar for Environmental Management

Biochar for Environmental Management

Author: Dr. Johannes Lehmann

Publisher: Earthscan

Published: 2009

Total Pages: 449

ISBN-13: 1849770557

DOWNLOAD EBOOK

"Biochar is the carbon-rich product when biomass (such as wood, manure, or crop residues) is heated in a closed container with little or no available air. It can be used to improve agriculture and the environment in several ways, and its stability in soil and superior nutrient-retention properties make it an ideal soil amendment to increase crop yields. In addition to this, biochar sequestration, in combination with sustainable biomass production, can be carbon-negative and therefore used to actively remove carbon dioxide from the atmosphere, with major implications for mitigation of climate change. Biochar production can also be combined with bioenergy production through the use of the gases that are given off in the pyrolysis process.This book is the first to synthesize the expanding research literature on this topic. The book's interdisciplinary approach, which covers engineering, environmental sciences, agricultural sciences, economics and policy, is a vital tool at this stage of biochar technology development. This comprehensive overview of current knowledge will be of interest to advanced students, researchers and professionals in a wide range of disciplines"--Provided by publisher.


Zeta Potential in Colloid Science

Zeta Potential in Colloid Science

Author: Robert J. Hunter

Publisher: Academic Press

Published: 2013-09-03

Total Pages: 399

ISBN-13: 1483214087

DOWNLOAD EBOOK

Zeta Potential in Colloid Science: Principles and Applications covers the concept of the zeta potential in colloid chemical theory. The book discusses the charge and potential distribution at interfaces; the calculation of the zeta potential; and the experimental techniques used in the measurement of electrokinetic parameters. The text also describes the electroviscous and viscoelectric effects; applications of the zeta potential to areas of colloid science; and the influence of simple inorganic ions or more complex adsorbates on zeta potential. Physical chemists and people involved in the study of colloid science will find the book useful.


Copper and Bronze in Art

Copper and Bronze in Art

Author: David A. Scott

Publisher: Getty Publications

Published: 2002

Total Pages: 536

ISBN-13: 9780892366385

DOWNLOAD EBOOK

This is a review of 190 years of literature on copper and its alloys. It integrates information on pigments, corrosion and minerals, and discusses environmental conditions, conservation methods, ancient and historical technologies.


Introduction to Glass Science and Technology

Introduction to Glass Science and Technology

Author: James E Shelby

Publisher: Royal Society of Chemistry

Published: 2015-11-06

Total Pages: 320

ISBN-13: 1782625119

DOWNLOAD EBOOK

This book provides a concise and inexpensive introduction for an undergraduate course in glass science and technology. The level of the book has deliberately been maintained at the introductory level to avoid confusion of the student by inclusion of more advanced material, and is unique in that its text is limited to the amount suitable for a one term course for students in materials science, ceramics or inorganic chemistry. The contents cover the fundamental topics of importance in glass science and technology, including glass formation, crystallization, phase separation and structure of glasses. Additional chapters discuss the most important properties of glasses, including discussion of physical, optical, electrical, chemical and mechanical properties. A final chapter provides an introduction to a number of methods used to form technical glasses, including glass sheet, bottles, insulation fibre, optical fibres and other common commercial products. In addition, the book contains discussion of the effects of phase separation and crystallization on the properties of glasses, which is neglected in other texts. Although intended primarily as a textbook, Introduction to Glass Science and Technology will also be invaluable to the engineer or scientist who desires more knowledge regarding the formation, properties and production of glass.