Laser Beam Quality Metrics

Laser Beam Quality Metrics

Author: T. Sean Ross

Publisher: SPIE-International Society for Optical Engineering

Published: 2013

Total Pages: 0

ISBN-13: 9780819492975

DOWNLOAD EBOOK

The book is geared toward engineers and laser physicists involved in the development of laser-based systems, especially laser systems for directed energy applications. It begins with a review of basic laser properties and moves to definitions and implications of the various standard beam quality metrics such as M2, power in the bucket, brightness, beam parameter product, and Strehl ratio. The practical aspects of beam metrology, which have not been sufficiently addressed in the literature, are amply covered here. For those who are only interested in measuring Gaussian beams from commercial lasers, a reading of Chapter 1, Chapter 2 "What Your Laser Beam Analyzer Manual Didn't Tell You," and the first three sections of Chapter 6 "Cautionary Tales" will be sufficient. For those working in more off-the-map fields such as unique lasers, unstable resonators, multikilowatt lasers, MOPAs, or requirements generation and development, a reading of the entire text is recommended.


High Resolution Focused Ion Beams: FIB and its Applications

High Resolution Focused Ion Beams: FIB and its Applications

Author: Jon Orloff

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 304

ISBN-13: 1461507650

DOWNLOAD EBOOK

In this book, we have attempted to produce a reference on high resolution focused ion beams (FIBs) that will be useful for both the user and the designer of FIB instrumentation. We have included a mix of theory and applications that seemed most useful to us. The field of FIBs has advanced rapidly since the application of the first field emission ion sources in the early 1970s. The development of the liquid metal ion source (LMIS) in the late 1960s and early 1970s and its application for FIBs in the late 1970s have resulted in a powerful tool for research and for industry. There have been hundreds of papers written on many aspects of LMIS and FIBs, and a useful and informative book on these subjects was published in 1991 by Phil Prewett and Grame Mair. Because there have been so many new applications and uses found for FIBs in the last ten years we felt that it was time for another book on the subject.


Electron-Beam Technology in Microelectronic Fabrication

Electron-Beam Technology in Microelectronic Fabrication

Author: George Brewer

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 377

ISBN-13: 0323153410

DOWNLOAD EBOOK

Electron-Beam Technology in Microelectronic Fabrication presents a unified description of the technology of high resolution lithography. This book is organized into six chapters, each treating a major segment of the technology of high resolution lithography. The book examines topics such as the physics of interaction of the electrons with the polymer resist in which the patterns are drawn, the machines that generate and control the beam, and ways of applying electron-beam lithography in device fabrication and in the making of masks for photolithographic replication. Chapter 2 discusses fundamental processes by which patterns are created in resist masks. Chapter 3 describes electron-beam lithography machines, including some details of each of the major elements in the electron-optical column and their effect on the focused electron beam. Chapter 4 presents the use of electron-beam lithography to make discrete devices and integrated circuits. Chapter 5 looks at the techniques and economics of mask fabrication by the use of electron beams. Finally, Chapter 6 presents a comprehensive description and evaluation of the several high resolution replication processes currently under development. This book will be of great value to students and to engineers who want to learn the unique features of high resolution lithography so that they can apply it in research, development, or production of the next generation of microelectronic devices and circuits.


Physics Of High Brightness Beams, 2nd Icfa Advanced Accelerator Workshop

Physics Of High Brightness Beams, 2nd Icfa Advanced Accelerator Workshop

Author: James B Rosenzweig

Publisher: World Scientific

Published: 2000-12-18

Total Pages: 620

ISBN-13: 981449237X

DOWNLOAD EBOOK

This book contains the proceedings of the 1999 ICFA workshop on the physics of high brightness beams. The workshop took a snapshot in time of a fast moving, interdisciplinary field driven by advanced applications such as high gradient, high energy physics linear colliders, high gain free electron lasers, heavy ion fusion, and transmutation of nuclear materials. While the field of high brightness beam physics has traditionally been divided into disparate electron and heavy ion communities, the workshop brought the two types of researchers together, so that a sharing of insights and methods could be achieved. Thus, this book represents a unifying step in the development of the diverse fascinating discipline of high brightness beam physics, with its challenges rooted in collective, nonlinear particle motion and ultra-high electromagnetic energy density.


The Physics of High Brightness Beams

The Physics of High Brightness Beams

Author: Jamie Rosenzweig

Publisher: World Scientific

Published: 2000

Total Pages: 628

ISBN-13: 9789810244224

DOWNLOAD EBOOK

This book contains the proceedings of the 1999 ICFA workshop on the physics of high brightness beams. The workshop took a snapshot in time of a fast moving, interdisciplinary field driven by advanced applications such as high gradient, high energy physics linear colliders, high gain free electron lasers, heavy ion fusion, and transmutation of nuclear materials. While the field of high brightness beam physics has traditionally been divided into disparate electron and heavy ion communities, the workshop brought the two types of researchers together, so that a sharing of insights and methods could be achieved. Thus, this book represents a unifying step in the development of the diverse fascinating discipline of high brightness beam physics, with its challenges rooted in collective, nonlinear particle motion and ultra-high electromagnetic energy density.


Atomic and Molecular Beams

Atomic and Molecular Beams

Author: Cyril Bernard Lucas

Publisher: CRC Press

Published: 2013-12-13

Total Pages: 396

ISBN-13: 1466561033

DOWNLOAD EBOOK

Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens. The book not only provides the basic expressions essential to beam design but also offers in-depth coverage of: Design of ovens and furnaces for atomic beam production Creation of atomic beams that require higher evaporation temperatures Theory of beam formation including the Clausing equation and the transmission probability Construction of collimating arrays in metals, plastics, glass, and other materials Optimization of the design of atomic beam collimators While many review articles and books discuss the application of atomic beams, few give technical details of their production. Focusing on practical application in the laboratory, the author critically reviews over 800 references to compare the atomic and molecular beam formation theories with actual experiments. Atomic and Molecular Beams: Production and Collimation is a comprehensive source of material for experimentalists facing the design of any atomic or molecular beam and theoreticians wishing to extend the theory.


Classical Theory of Free-Electron Lasers

Classical Theory of Free-Electron Lasers

Author: Eric B Szarmes

Publisher: Morgan & Claypool Publishers

Published: 2014-12-01

Total Pages: 163

ISBN-13: 1627057102

DOWNLOAD EBOOK

This textbook focuses on the fully classical theory of FELs with application to FEL oscillators and develops the fundamentals of FEL theory in sufficient depth to provide both a solid understanding of FEL physics and a solid background for research in the


Nanofabrication Using Focused Ion and Electron Beams

Nanofabrication Using Focused Ion and Electron Beams

Author: Ivo Utke

Publisher: Oxford University Press

Published: 2012-03-05

Total Pages: 830

ISBN-13: 0199920990

DOWNLOAD EBOOK

Nanofabrication Using Focused Ion and Electron Beams presents fundamentals of the interaction of focused ion and electron beams (FIB/FEB) with surfaces, as well as numerous applications of these techniques for nanofabrication involving different materials and devices. The book begins by describing the historical evolution of FIB and FEB systems, applied first for micro- and more recently for nanofabrication and prototyping, practical solutions available in the market for different applications, and current trends in development of tools and their integration in a fast growing field of nanofabrication and nanocharacterization. Limitations of the FIB/FEB techniques, especially important when nanoscale resolution is considered, as well as possible ways to overcome the experimental difficulties in creating new nanodevices and improving resolution of processing, are outlined. Chapters include tutorials describing fundamental aspects of the interaction of beams (FIB/FEB) with surfaces, nanostructures and adsorbed molecules; electron and ion beam chemistries; basic theory, design and configuration of equipment; simulations of processes; basic solutions for nanoprototyping. Emerging technologies as processing by cluster beams are also discussed. In addition, the book considers numerous applications of these techniques (milling, etching, deposition) for nanolithography, nanofabrication and characterization, involving different nanostructured materials and devices. Its main focus is on practical details of using focused ion and electron beams with gas assistance (deposition and etching) and without gas assistance (milling/cutting) for fabrication of devices from the fields of nanoelectronics, nanophotonics, nanomagnetics, functionalized scanning probe tips, nanosensors and other types of NEMS (nanoelectromechanical systems). Special attention is given to strategies designed to overcome limitations of the techniques (e.g., due to damaging produced by energetic ions interacting with matter), particularly those involving multi-step processes and multi-layer materials. Through its thorough demonstration of fundamental concepts and its presentation of a wide range of technologies developed for specific applications, this volume is ideal for researches from many different disciplines, as well as engineers and professors in nanotechnology and nanoscience.