Astrophysics at Very High Energies

Astrophysics at Very High Energies

Author: Felix Aharonian

Publisher: Springer Science & Business Media

Published: 2013-04-04

Total Pages: 369

ISBN-13: 364236134X

DOWNLOAD EBOOK

With the success of Cherenkov Astronomy and more recently with the launch of NASA’s Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergström presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.


Time Reversibility, Computer Simulation, Algorithms, Chaos

Time Reversibility, Computer Simulation, Algorithms, Chaos

Author: William Graham Hoover

Publisher: World Scientific

Published: 2012

Total Pages: 426

ISBN-13: 9814383163

DOWNLOAD EBOOK

The book begins with a discussion, contrasting the idealized reversibility of basic physics against the pragmatic irreversibility of real life. Computer models, and simulation, are next discussed and illustrated. Simulations provide the means to assimilate concepts through worked-out examples. State-of-the-art analyses, from the point of view of dynamical systems, are applied to many-body examples from nonequilibrium molecular dynamics and to chaotic irreversible flows from finite-difference, finite-element, and particle-based continuum simulations. Two necessary concepts from dynamical-systems theory - fractals and Lyapunov instability - are fundamental to the approach. Undergraduate-level physics, calculus, and ordinary differential equations are sufficient background for a full appreciation of this book, which is intended for advanced undergraduates, graduates, and research workers.


Hand Function

Hand Function

Author: Mehmet Tuncay Duruöz

Publisher: Springer Science & Business Media

Published: 2014-03-29

Total Pages: 252

ISBN-13: 1461494494

DOWNLOAD EBOOK

Accurate assessment of hand function is critical to any treatment regimen of the hand compromised patient. Hand Function is a practical, clinical book which provides the knowledge needed to distinguish the different dimensions of hand function, particularly impairment, disability and handicap. Beginning with an overview of basic principles and examination, subsequent chapters evaluate the hand function in specific afflicted populations, including the rheumatoid patient, the stroke patient, the trauma patient, the geriatric patient and the pediatric patient, as well as special populations such as diabetes mellitus patients and musicians. An appendix containing hand function scales essential to the assessment of disability is also included. Rheumatologists, physiatrists, hand surgeons, orthopedists, occupational therapists and physical therapists will all find Hand Function a useful and valuable addition to their clinical references.


Equilibrium Structural Parameters

Equilibrium Structural Parameters

Author:

Publisher: Elsevier Science

Published: 1999-11-30

Total Pages: 0

ISBN-13: 9780444504043

DOWNLOAD EBOOK

The current volume in the series, Vibrational Spectra and Structure, is a single topic volume on gas phase structural parameters. The title of the volume, Equilibrium Structural Parameters, covers the two most common techniques for obtaining gas phase structural parameters: microwave spectroscopy and the electron diffraction technique. Since the quantum chemical method provides equilibrium geometries, the volume is an attempt to provide a connection between the experimental and theoretical parameters. The book provides a review on molecular structure determinations from spectroscopic data using scaled moments of inertia. The limited number of molecules for which equilibrium parameters have been obtained and the requirement of a large number of microwave data needed to obtain the equilibrium structural parameters is noted. Electron diffraction technique is reviewed, along with a description of how this can incorporate structural information from microwave spectroscopy, vibrational spectroscopy, or theoretical calculations to improve the determination of the structural parameters by electron diffraction studies. Also discussed are the theory and methods of microwave spectroscopy, describing in some detail ro and rs structures as well as rm structures and corrections based on ab initio calculations. The accuracy of the molecular geometry predictions by quantum chemical methods is considered in some detail with data presented in graphic rather than tabular form. This makes it possible to readily note the difference in the parameters predicted at the various levels of quantum mechanical calculations. The four authors have provided a coherent description of the various structural parameters obtained experimentally along with treatments needed to extract equilibrium bond distances and angles.


Dark Matter in Astrophysics and Particle Physics

Dark Matter in Astrophysics and Particle Physics

Author: Hans Volker Klapdor-Kleingrothaus

Publisher: World Scientific

Published: 2010

Total Pages: 603

ISBN-13: 9814293784

DOWNLOAD EBOOK

Dark matter and dark energy are one of the central mysteries in modern physics, although modern astrophysical and cosmological observations and particle physics experiments can and will provide vital clues in uncovering its true nature. The DARK 2009 Conference brought together World?s leading researchers in both astrophysics and particle physics, providing an opportunity and platform to present their latest results to the community. The topics covered are wide-ranging, from terrestrial underground experiments to space experimental efforts to search for dark matter, and on the theoretical aspects, from the generating of a fifth family as origin of dark matter, extra dimensions and dark matter to non-standard Wigner classes and dark matter. One of the new highlights was certainly a possible connection between a neutrino mass as observed by nuclear double beta decay and the dark energy. Highly important and relevant in its field, the book presents a vital snapshot of the sometimes seemingly disparate areas of dark matter research and offers an exciting overview of current ideas and future directions.


Introduction To High-energy Heavy-ion Collisions

Introduction To High-energy Heavy-ion Collisions

Author: Cheuk-yin Wong

Publisher: World Scientific

Published: 1994-09-30

Total Pages: 542

ISBN-13: 9814506850

DOWNLOAD EBOOK

Written primarily for researchers and graduate students who are new in this emerging field, this book develops the necessary tools so that readers can follow the latest advances in this subject. Readers are first guided to examine the basic informations on nucleon-nucleon collisions and the use of the nucleus as an arena to study the interaction of one nucleon with another. A good survey of the relation between nucleon-nucleon and nucleus-nucleus collisions provides the proper comparison to study phenomena involving the more exotic quark-gluon plasma. Properties of the quark-gluon plasma and signatures for its detection are discussed to aid future searches and exploration for this exotic matter. Recent experimental findings are summarised.


Why Galaxies Care about AGB Stars (IAU S343)

Why Galaxies Care about AGB Stars (IAU S343)

Author: Franz Kerschbaum

Publisher: Cambridge University Press

Published: 2019-09-30

Total Pages: 500

ISBN-13: 9781108471527

DOWNLOAD EBOOK

Stars on the asymptotic giant branch (AGB stars) play an important role due to their high luminosity and production of heavy elements and cosmic dust. They are prime laboratories for studying situations where different physical and chemical processes work simultaneously, on different time scales. IAU Symposium 343 builds a bridge between research on AGB stars themselves and their applications to the modelling of stellar populations and the chemical evolution of galaxies. Our understanding of these complex stars is given using insights into many aspects of physics and chemistry, while very high-angular resolution observations of AGB stars and their surroundings provide strong constraints on stellar theory and how they lose matter through strong stellar winds. This volume also highlights the difficulties in estimating the importance of AGB stars for various aspects of galaxies. Current developments and challenges of these complex objects are discussed for a broad, interdisciplinary audience of astronomers.


Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity Violation at RHIC for STAR Collaboration

Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity Violation at RHIC for STAR Collaboration

Author: Quan Wang

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 153

ISBN-13: 3319007564

DOWNLOAD EBOOK

It has been suggested that local parity violation (LPV) in Quantum Chromodynamics (QCD) would lead to charge separation of quarks by the Chiral Magnetic Effect (CME) in heavy ion collisions. Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity Violation at RHIC for STAR Collaboration presents the detailed study of charge separation with respect to the event plane. Results on charge multiplicity asymmetry in Au+Au and d+Au collisions at 200 GeV by the STAR experiment are reported. It was found that the correlation results could not be explained by CME alone. Additionally, the charge separation signal as a function of the measured azimuthal angle range as well as the event-by-event anisotropy parameter are studied. These results indicate that the charge separation effect appears to be in-plane rather than out-of-plane. It is discovered that the charge separation effect is proportional to the event-by-event azimuthal anisotropy and consistent with zero in events with zero azimuthal anisotropy. These studies suggest that the charge separation effect, within the statistical error, may be a net effect of event anisotropy and correlated particle production. A potential upper limit on the CME is also presented through this data.


Ultrarelativistic Heavy-Ion Collisions

Ultrarelativistic Heavy-Ion Collisions

Author: Ramona Vogt

Publisher: Elsevier

Published: 2007-06-04

Total Pages: 489

ISBN-13: 0080525369

DOWNLOAD EBOOK

This book is designed for advanced undergraduate and graduate students in high energy heavy-ion physics. It is relevant for students who will work on topics being explored at RHIC and the LHC. In the first part, the basic principles of these studies are covered including kinematics, cross sections (including the quark model and parton distribution functions), the geometry of nuclear collisions, thermodynamics, hydrodynamics and relevant aspects of lattice gauge theory at finite temperature. The second part covers some more specific probes of heavy-ion collisions at these energies: high mass thermal dileptons, quarkonium and hadronization. The second part also serves as extended examples of concepts learned in the previous part. Both parts contain examples in the text as well as exercises at the end of each chapter.- Designed for students and newcomers to the field- Focuses on hard probes and QCD- Covers all aspects of high energy heavy-ion physics- Includes worked example problems and exercises


Heavy Ion Collisions

Heavy Ion Collisions

Author: Paul Bonche

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 408

ISBN-13: 1468450158

DOWNLOAD EBOOK

The 1984 Cargese Advanced Study Institute was devoted to the study of nuclear heavy ion collisions at medium and ultrarelativis tic energies. The origin of this meeting goes back to 1982 when the organizers met at the GANIL laboratory in Caen, France which had just started accelerating argon ions at 44 MeV per nucleon. We then realized that 1984 should be the appropriate time to review the first results obtained with such new kinds of facilities. The material contained in this volume, presenting many beautiful re sults on nuclei at high excitation, fully confirms this point. Many stimulating exchanges between experts in rather diffe rent fields already took place during the school and we hope that this cross fertilization will lead to further developments. About half of the present volume is also devoted to the field of relativistic heavy ion collisions, which is now expanding rapidly. As an illustration, let us recall that the construction of a 30 on 30 GeV per nucleon collider at Brookhaven has been recognized last year as one cf the major priorities by the US Nuclear Science Advisory Committee. We would like to express our gratitude to NATO for its ge nerous financial support which made this institute possible. We also wish to thank the Institut de Physique Nucleaire et de Physique des Particules (France), the Commissariat a l'energie atomique (France) and The National Science Foundation (USA) for the attribution of travel grants.