Volume 37 of Reviews in Mineralogy moves from the complexity of rocks to their mineral components and finally to fundamental properties arising directly from the play of electrons and nuclei. This volume was prepared for a short course by the same t
Rock physics encompasses practically all aspects of solid and fluid state physics. This book provides a unified presentation of the underlying physical principles of rock physics, covering elements of mineral physics, petrology and rock mechanics. After a short introduction on rocks and minerals, the subsequent chapters cover rock density, porosity, stress and strain relationships, permeability, poroelasticity, acoustics, conductivity, polarizability, magnetism, thermal properties and natural radioactivity. Each chapter includes problem sets and focus boxes with in-depth explanations of the physical and mathematical aspects of underlying processes. The book is also supplemented by online MATLAB exercises to help students apply their knowledge to numerically solve rock physics problems. Covering laboratory and field-based measurement methods, as well as theoretical models, this textbook is ideal for upper-level undergraduate and graduate courses in rock physics. It will also make a useful reference for researchers and professional scientists working in geoscience and petroleum engineering.
Recently there has been growing interest in the physical properties of rocks. To interpret data on the geophysical fields observed near the Earth's surface, we must know the physical properties of the materials composing the interior. Moreover, the development of geophysical methods (in particular, electrical methods) is necessitating a multiple approach to the study of the physical properties of rocks and minerals. In connection with problems now appearing, the physical properties of rocks must be studied in the laboratory under var ious thermodynamic conditions. Electrical methods of geophysi cal exploration often may require only data obtained at atmos pheric pressure and room temperature, or at temperatures below 100°C. If, however, we have in mind geophysical field observa tions on the composition and state of matter deep in the Earth's crust and mantle, we must conduct laboratory experiments at high pressures and temperatures. For example, in interpreting data from geomagnetic soundings of the mantle, we may need experi mental results on the electrical properties of rocks at pressures of tens of kilobars and temperatures of the order of lOOO°C. In this connection, we must remember that pressure has relatively little effect on the electrical properties of rocks, whereas, tem perature affects them very strongly. v vi FOREWORD At present, while research into the mechanical properties of rocks (relating to the problems of geophysics, geochemistry, geology, and mining) is pressing forward on a wide front, much less work is being done with electrical properties.
CRC Practical Handbooks are a series of single-volume bench manuals that feature a synthesis of the most frequently used, basic reference information. These highly abridged versions of existing CRC multi-volume Handbooks contain largely tabular and graphic data. They provide extensive coverage in a scientific discipline and enable quick, convenient access to the most practical reference information...on the spot! Leading professionals in their respective fields collaborated to provide individuals and institutions with an economical and easy-to-use source of classic reference information. The CRC Practical Handbook of PHYSICAL PROPERTIES of ROCKS and MINERALS, prepared by leaders in their specialties, has been constructed to serve as a convenient, compact, yet comprehensive source of basic information. The technical data have been compiled and selectively edited to provide an organized and definitive presentation of the physical properties of rocks and their constituent minerals. The format is primarily tabular and graphical, for easy reference and comparisons. There is also instructive textual material to present, explain, and clarify the data. This edited and abridged version of the CRC Handbook of Physical Properties of Rocks, published in three volumes in 1982 - 1984, will serve as an easy-to-use source of current and useful reference information.
This book includes the basics and published and unpublished data on thermal properties, density-porosity-permeability, electrical properties, seismic properties, magnetic properties and natural radioactivity at NTP and for some properties at elevated temperatures for crust-mantle rocks and minerals with special reference to Deccan Basalts, their units, measurement techniques, co-relation with other geophysical parameters and applications. The writing of the book is sponsored by the Department of Science and Technology (DST) New Delhi for the benefit of the students, research scholars and scientists.
The present book is the result of work carried out over a period of about ten years by the author and his co-workers in order to describe more accurately the slow irreversible deformation in time of the rocks surrounding underground openings. To begin with, our efforts were directed toward a better under standing of the mechanical behaviour of rocks and to the formulation of more precise mathematical models for their dominant mechanical properties, mainly irreversible dilatancy and/or compressibility during creep. Subsequent efforts were focused on finding improved solutions to important mining and oil engineering problems, such as, for instance, the creep of rocks around wells and tunnels, short-term failure which may occur around an underground opening, damage and failure which take place after long-time intervals, the tunnel support analysis incorporating rock creep, etc. The book is the result of a great number of questions posed either by mining engineers or by the author himself, and of the corresponding answers (unfor tunately often only partial answers). This dialogue must certainly be continued in order to improve the models and to formulate models for other kinds of rocks, or, ultimately to obtain solutions for other important engineering problems. It is hoped that the book will also contribute to a better description, by means of mathematical models, of the mechanical behaviour of rocks.
This book describes origin and characteristics of the Earth’s thermal field, thermal flow propagation and some thermal phenomena in the Earth. Description of thermal properties of rocks and methods of thermal field measurements in boreholes, underground, at near-surface conditions enables to understand the principles of temperature field acquisition and geothermal model development. Processing and interpretation of geothermal data are shown on numerous field examples from different regions of the world. The book warps, for instance, such fields as analysis of thermal regime of the Earth’s crust, evolution and thermodynamic conditions of the magma-ocean and early Earth atmosphere, thermal properties of permafrost, thermal waters, geysers and mud volcanoes, methods of Curie discontinuity construction, quantitative interpretation of thermal anomalies, examination of some nonlinear effects, and integration of geothermal data with other geophysical methods. This book is intended for students and researchers in the field of Earth Sciences and Environment studying thermal processes in the Earth and in the subsurface. It will be useful for specialists applying thermal field analysis in petroleum, water and ore geophysics, environmental and ecological studies, archaeological prospection and climate of the past.