High Performance Integrated Circuit Design

High Performance Integrated Circuit Design

Author: Emre Salman

Publisher: McGraw Hill Professional

Published: 2012-08-21

Total Pages: 738

ISBN-13: 0071635769

DOWNLOAD EBOOK

The latest techniques for designing robust, high performance integrated circuits in nanoscale technologies Focusing on a new technological paradigm, this practical guide describes the interconnect-centric design methodologies that are now the major focus of nanoscale integrated circuits (ICs). High Performance Integrated Circuit Design begins by discussing the dominant role of on-chip interconnects and provides an overview of technology scaling. The book goes on to cover data signaling, power management, synchronization, and substrate-aware design. Specific design constraints and methodologies unique to each type of interconnect are addressed. This comprehensive volume also explains the design of specialized circuits such as tapered buffers and repeaters for data signaling, voltage regulators for power management, and phase-locked loops for synchronization. This is an invaluable resource for students, researchers, and engineers working in the area of high performance ICs. Coverage includes: Technology scaling Interconnect modeling and extraction Signal propagation and delay analysis Interconnect coupling noise Global signaling Power generation Power distribution networks CAD of power networks Techniques to reduce power supply noise Power dissipation Synchronization theory and tradeoffs Synchronous system characteristics On-chip clock generation and distribution Substrate noise in mixed-signal ICs Techniques to reduce substrate noise


High Performance Integrated Circuit Design

High Performance Integrated Circuit Design

Author: Emre Salman

Publisher: McGraw Hill Professional

Published: 2012-08-14

Total Pages: 737

ISBN-13: 0071635750

DOWNLOAD EBOOK

The latest techniques for designing robust, high performance integrated circuits in nanoscale technologies Focusing on a new technological paradigm, this practical guide describes the interconnect-centric design methodologies that are now the major focus of nanoscale integrated circuits (ICs). High Performance Integrated Circuit Design begins by discussing the dominant role of on-chip interconnects and provides an overview of technology scaling. The book goes on to cover data signaling, power management, synchronization, and substrate-aware design. Specific design constraints and methodologies unique to each type of interconnect are addressed. This comprehensive volume also explains the design of specialized circuits such as tapered buffers and repeaters for data signaling, voltage regulators for power management, and phase-locked loops for synchronization. This is an invaluable resource for students, researchers, and engineers working in the area of high performance ICs. Coverage includes: Technology scaling Interconnect modeling and extraction Signal propagation and delay analysis Interconnect coupling noise Global signaling Power generation Power distribution networks CAD of power networks Techniques to reduce power supply noise Power dissipation Synchronization theory and tradeoffs Synchronous system characteristics On-chip clock generation and distribution Substrate noise in mixed-signal ICs Techniques to reduce substrate noise


Three-Dimensional Integrated Circuit Design

Three-Dimensional Integrated Circuit Design

Author: Vasilis F. Pavlidis

Publisher: Newnes

Published: 2017-07-04

Total Pages: 770

ISBN-13: 0124104843

DOWNLOAD EBOOK

Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization


CMOS Analog Integrated Circuits

CMOS Analog Integrated Circuits

Author: Tertulien Ndjountche

Publisher: CRC Press

Published: 2019-12-17

Total Pages: 1176

ISBN-13: 0429850409

DOWNLOAD EBOOK

High-speed, power-efficient analog integrated circuits can be used as standalone devices or to interface modern digital signal processors and micro-controllers in various applications, including multimedia, communication, instrumentation, and control systems. New architectures and low device geometry of complementary metaloxidesemiconductor (CMOS) technologies have accelerated the movement toward system on a chip design, which merges analog circuits with digital, and radio-frequency components.


Next-Generation ADCs, High-Performance Power Management, and Technology Considerations for Advanced Integrated Circuits

Next-Generation ADCs, High-Performance Power Management, and Technology Considerations for Advanced Integrated Circuits

Author: Andrea Baschirotto

Publisher: Springer Nature

Published: 2019-10-24

Total Pages: 322

ISBN-13: 3030252671

DOWNLOAD EBOOK

This book is based on the 18 tutorials presented during the 28th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including next-generation analog-to-digital converters , high-performance power management systems and technology considerations for advanced IC design. For anyone involved in analog circuit research and development, this book will be a valuable summary of the state-of-the-art in these areas. Provides a summary of the state-of-the-art in analog circuit design, written by experts from industry and academia; Presents material in a tutorial-based format; Includes coverage of next-generation analog-to-digital converters, high-performance power management systems, and technology considerations for advanced IC design.


High-speed Integrated Circuit Technology

High-speed Integrated Circuit Technology

Author: Mark J. W. Rodwell

Publisher: World Scientific

Published: 2001

Total Pages: 372

ISBN-13: 9810246382

DOWNLOAD EBOOK

This book reviews the state of the art of very high speed digital integrated circuits. Commercial applications are in fiber optic transmission systems operating at 10, 40, and 100 Gb/s, while the military application is ADCs and DACs for microwave radar. The book contains detailed descriptions of the design, fabrication, and performance of wideband Si/SiGe-, GaAs-, and InP-based bipolar transistors. The analysis, design, and performance of high speed CMOS, silicon bipolar, and III-V digital ICs are presented in detail, with emphasis on application in optical fiber transmission and mixed signal ICs. The underlying physics and circuit design of rapid single flux quantum (RSFQ) superconducting logic circuits are reviewed, and there is extensive coverage of recent integrated circuit results in this technology.


Analogue IC Design

Analogue IC Design

Author: Chris Toumazou

Publisher: IET

Published: 1993

Total Pages: 676

ISBN-13: 9780863412974

DOWNLOAD EBOOK

Analogue IC Design has become the essential title covering the current-mode approach to integrated circuit design. The approach has sparked much interest in analogue electronics and is linked to important advances in integrated circuit technology, such as CMOS VLSI which allows mixed analogue and digital circuits and high-speed GaAs processing.


High-Performance Digital VLSI Circuit Design

High-Performance Digital VLSI Circuit Design

Author: Richard X. Gu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 322

ISBN-13: 1461522978

DOWNLOAD EBOOK

High-Performance Digital VLSI Circuit Design is the first book devoted entirely to the design of digital high-performance VLSI circuits. CMOS, BiCMOS and bipolar ciruits are covered in depth, including state-of-the-art circuit structures. Recent advances in both the computer and telecommunications industries demand high-performance VLSI digital circuits. Digital processing of signals demands high-speed circuit techniques for the GHz range. The design of such circuits represents a great challenge; one that is amplified when the power supply is scaled down to 3.3 V. Moreover, the requirements of low-power/high-performance circuits adds an extra dimension to the design of such circuits. High-Performance Digital VLSI Circuit Design is a self-contained text, introducing the subject of high-performance VLSI circuit design and explaining the speed/power tradeoffs. The first few chapters of the book discuss the necessary background material in the area of device design and device modeling, respectively. High-performance CMOS circuits are then covered, especially the new all-N-logic dynamic circuits. Propagation delay times of high-speed bipolar CML and ECL are developed analytically to give a thorough understanding of various interacting process, device and circuit parameters. High-current phenomena of bipolar devices are also addressed as these devices typically operate at maximum currents for limited device area. Different, new, high-performance BiCMOS circuits are presented and compared to their conventional counterparts. These new circuits find direct applications in the areas of high-speed adders, frequency dividers, sense amplifiers, level-shifters, input/output clock buffers and PLLs. The book concludes with a few system application examples of digital high-performance VLSI circuits. Audience: A vital reference for practicing IC designers. Can be used as a text for graduate and senior undergraduate students in the area.


High-Frequency Analog Integrated Circuit Design

High-Frequency Analog Integrated Circuit Design

Author: Ravender Goyal

Publisher: Wiley-Interscience

Published: 1995

Total Pages: 432

ISBN-13:

DOWNLOAD EBOOK

. Offering comprehensive coverage of state-of-the-art GaAs MESFET technology and design techniques for analog ICs, this book features detailed, step-by-step guidance on everything from basic concepts such as biasing network, current source, current mirrors, and differential circuits; to more complex designs, such as amplifiers, mixers, oscillators, and operational amplifier designs; and finally, high-level functions such as A/D and D/A converters and their implementation in GaAs technology.


On-Chip Inductance in High Speed Integrated Circuits

On-Chip Inductance in High Speed Integrated Circuits

Author: Yehea I. Ismail

Publisher: Springer

Published: 2012-10-23

Total Pages: 303

ISBN-13: 9781461356776

DOWNLOAD EBOOK

The appropriate interconnect model has changed several times over the past two decades due to the application of aggressive technology scaling. New, more accurate interconnect models are required to manage the changing physical characteristics of integrated circuits. Currently, RC models are used to analyze high resistance nets while capacitive models are used for less resistive interconnect. However, on-chip inductance is becoming more important with integrated circuits operating at higher frequencies, since the inductive impedance is proportional to the frequency. The operating frequencies of integrated circuits have increased dramatically over the past decade and are expected to maintain the same rate of increase over the next decade, approaching 10 GHz by the year 2012. Also, wide wires are frequently encountered in important global nets, such as clock distribution networks and in upper metal layers, and performance requirements are pushing the introduction of new materials for low resistance interconnect, such as copper interconnect already used in many commercial CMOS technologies. On-Chip Inductance in High Speed Integrated Circuits deals with the design and analysis of integrated circuits with a specific focus on on-chip inductance effects. It has been described throughout this book that inductance can have a tangible effect on current high speed integrated circuits. For example, neglecting inductance and using an RC interconnect model in a production 0.25 mum CMOS technology can cause large errors (over 35%) in estimates of the propagation delay of on-chip interconnect. It has also been shown that including inductance in the repeater insertion design process as compared to using an RC model improves the overall repeater solution in terms of area, power, and delay with average savings of 40.8%, 15.6%, and 6.7%, respectively. On-Chip Inductance in High Speed Integrated Circuits is full of design and analysis techniques for RLC interconnect. These techniques are compared to techniques traditionally used for RC interconnect design to emphasize the effect of inductance. emOn-Chip Inductance in High Speed Integrated Circuits will be of interest to researchers in the area of high frequency interconnect, noise, and high performance integrated circuit design.