High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 2: Materials

High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 2: Materials

Author: Mateusz Radlinski

Publisher: Purdue University Press

Published: 2008-11-01

Total Pages: 254

ISBN-13: 9781622601097

DOWNLOAD EBOOK

The purpose of this research was to examine the applicability of ternary binder systems containing ordinary portland cement (OPC), class C fly ash (FA) and silica fume (SF) for bridge deck concrete. This was accomplished in two parts, the laboratory part and a field application part. During the laboratory studies, four ternary mixtures, each containing either 20% or 30% FA and either 5% or 7% SF were subjected to four different curing regimes (air drying, 7 days curing compound application and 3 or 7 days wet burlap curing). In general, all four ternary mixtures exhibited very good water and chloride solution transport-controlling properties (resistance to chloride-ion penetration, chloride diffusivity and rate of water absorption). However, it was concluded that in order to ensure adequate strength, good freezing and thawing resistance, satisfactory resistance to salt scaling, and adequate shrinkage cracking resistance the FA content should not exceed 20%, SF content should not exceed 5% (by total mass of binder) and paste content should be kept below 24% by volume of concrete. Further, wet burlap curing for a minimum of 3 days was required to achieve satisfactory performance and to obtain a reliable assessment of in-situ compressive strength (up to 28 days) using maturity method. The second part of this research examined the performance of ternary concrete containing 20% FA and 5% SF in the pilot HPC bridge deck constructed in northern Indiana. Using maturity method developed for the purpose of this study, it was determined that the unexpectedly high RCP values of concrete placed late in the construction season were mostly attributed to low ambient temperature. Additional applications of the developed maturity method were also demonstrated. These include assessment of risk of scaling and reduction in time to corrosion initiation as a function of construction date, as well as estimation of long-term RCP values of concrete subjected to accelerated curing.


Behavior of Field-cast Ultra-high Performance Concrete Bridge Deck Connections Under Cyclic and Static Structural Loading

Behavior of Field-cast Ultra-high Performance Concrete Bridge Deck Connections Under Cyclic and Static Structural Loading

Author: Benjamin A. Graybeal

Publisher:

Published: 2010

Total Pages: 106

ISBN-13:

DOWNLOAD EBOOK

"The use of modular bridge deck components has the potential to produce higher quality, more durable bridge decks; however, the required connections have often proved lacking, resulting in less than desirable overall system performance. Advanced cementitious composite materials whose mechanical and durability properties far exceed those of conventional concretes present an opportunity to significantly enhance the performance of field-cast connections thus facilitating the wider use of modular bridge deck systems. Ultra-high performance concrete (UHPC) represents a class of such advanced cementitious composite materials. Of particular interest here, UHPCs can exhibit both exceptional bond when cast against previously cast concrete and can significantly shorten the development length of embedded discrete steel reinforcement. These properties allow for a redesign of the modular component connection, facilitating simplified construction and enhanced long-term system performance. This study investigated the structural performance of field-cast UHPC connections for modular bridge deck components. The transverse and longitudinal connection specimens simulated the connections between precast deck panels and the connections between the top flanges of deck-bulb-tee girders, respectively. Testing included both cyclic and static loadings. The results demonstrated that the field-cast UHPC connection facilitates the construction of an emulative bridge deck system whose behaviors should meet or exceed those of a conventional cast-in-place bridge deck"--Technical report documentation page.


High-performance Construction Materials: Science And Applications

High-performance Construction Materials: Science And Applications

Author: Caijun Shi

Publisher: World Scientific

Published: 2008-06-11

Total Pages: 448

ISBN-13: 9814471453

DOWNLOAD EBOOK

This book describes a number of high-performance construction materials, including concrete, steel, fiber-reinforced cement, fiber-reinforced plastics, polymeric materials, geosynthetics, masonry materials and coatings. It discusses the scientific bases for the manufacture and use of these high-performance materials. Testing and application examples are also included, in particular the application of relatively new high-performance construction materials to design practice.Most books dealing with construction materials typically address traditional materials only rather than high-performance materials and, as a consequence, do not satisfy the increasing demands of today's society. On the other hand, books dealing with materials science are not engineering-oriented, with limited coverage of the application to engineering practice. This book is thus unique in reflecting the great advances made on high-performance construction materials in recent years.This book is appropriate for use as a textbook for courses in engineering materials, structural materials and civil engineering materials at the senior undergraduate and graduate levels. It is also suitable for use by practice engineers, including construction, materials, mechanical and civil engineers.


High Performance Concretes

High Performance Concretes

Author: Paul Zia

Publisher:

Published: 1991

Total Pages: 262

ISBN-13:

DOWNLOAD EBOOK

This state-of-the-art report summarizes the results of an extensive search and review of available literature on the mechanical properties of concrete, with particular reference to high performance concrete for highway applications. Included in the review and discussion are the behavior of plastic concrete as well as the strength and deformation characteristics of hardened concrete. Both short-term and long-term effects are considered. Based on the review of the available information, research needs are identified. It is concluded that much research is needed to develop data on the strength and durability properties of concrete which develops high strength, particularly very early strength.


Gravel Roads

Gravel Roads

Author: Ken Skorseth

Publisher:

Published: 2000

Total Pages: 112

ISBN-13:

DOWNLOAD EBOOK

The purpose of this manual is to provide clear and helpful information for maintaining gravel roads. Very little technical help is available to small agencies that are responsible for managing these roads. Gravel road maintenance has traditionally been "more of an art than a science" and very few formal standards exist. This manual contains guidelines to help answer the questions that arise concerning gravel road maintenance such as: What is enough surface crown? What is too much? What causes corrugation? The information is as nontechnical as possible without sacrificing clear guidelines and instructions on how to do the job right.


Bridge Preservation Guide

Bridge Preservation Guide

Author: U.s. Department of Transportation

Publisher: Createspace Independent Publishing Platform

Published: 2012-10-26

Total Pages: 30

ISBN-13: 9781480191730

DOWNLOAD EBOOK

This guide provides bridge related definitions and corresponding commentaries, as well as the framework for a systematic approach to a preventive maintenance program. The goal is to provide guidance on bridge preservation. This guide is intended for Federal, State, and local bridge engineers, area engineers, bridge owners, and bridge preservation practitioners.