Probing Femtosecond and Attosecond Electronic and Chiral Dynamics

Probing Femtosecond and Attosecond Electronic and Chiral Dynamics

Author: Samuel Beaulieu

Publisher:

Published: 2018

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

This thesis manuscript is articulated around the investigation of the interaction between ultrashort light pulses and gas-phase atoms, polyatomic and chiral molecules. Using the toolboxes developed in attosecond and strong-field physics as well as in femtochemistry, our general goal is to reach a better understanding of subtle effects underlying ultrafast light-induced dynamics in matter.To do so, we developed cutting-edge near-infrared and mid-infrared few-cycle light sources, which were used to build a water-window soft-X-ray source based on high order harmonic generation (HHG), as well as to study new HHG channels involving highly-excited (Rydberg) states. The latter study revealed a delayed HHG emission from the ionization of Rydberg states and radiative recombination onto the electronicground state, triggering our interest in the role of Rydberg states in strong-field physics. This led us to investigate the laser-induced XUV Free Induced Decay from electronic wave packets as a new background-free 2D spectroscopic technique.More over, we have found out that strong-field interaction with a well prepared coherent superposition of electronic states led to the generation of hyper-Ramanlines concomitant with standard high-order harmonics. These spectral features were predicted in the early-days theoretical calculations of HHG but had never been reported experimentally.After these experiments in rare gas atoms, we moved to molecular targets, in whichlight-induced electronic excitation can trigger nuclear dynamics. Using simple benchmark molecules, we have studied dynamics involving the participation of both nuclear and electronic degrees of freedom: first, we studied the ultrafast non adiabatic photoisomerization of the acetylene cation into vinylidene cation, andsecond, we investigated the coherent control of electron localization during molecular photodissociation of H2+. The simplicity of these molecular targets enabled the comparison of the experimental results with state-of-the-art theoretical calculations,revealing the importance of the coupling between nuclear and electronic degrees of freedom in photoinduced molecular dynamics.The other major pillar of this thesis is the study of ionization of chiral molecules usingchiral light pulses. It has been known since the 70s that the ionization from an ensemble of randomly oriented chiral molecules, using circularly polarized light pulse,leads to a strong forward-backward asymmetry in the number of emitted photoelectrons, along the light propagation axis (Photoelectron Circular Dichroism,PECD). Prior to this thesis, PECD was widely studied at synchrotron facilities (single photonionization) and had recently been demonstrated using table-top lasers in resonant-enhanced multiphoton ionization schemes. In this thesis, we have shownthat PECD is a universal effect, i.e. that it emerges in all ionization regimes, from single photon ionization, to few-photon ionization, to above-threshold ionization, up to the tunneling ionization regime. This bridges the gap between chiral photoionizationand strong-field physics. Next, we have shown how the combination of standard femtochemistry approaches and PECD can be used to follow the dynamics of photoexcited chiral molecules using time-resolved PECD. Using similar experimental approaches, but by using pulse sequences with counter-intuitive polarization states,we have demonstrated a novel electric dipolar chiroptical effect, called Photoexcitation Circular Dichroism (PXCD), which emerges as a directional and chirosensitive electron current when multiple excited bound states of chiral molecules are coherently populated with chiral light. Last, we introduced a time-domain perspective on chiral photoionization by measuring the forward-backward asymmetry of photoionization delays in chiral molecules photoionized by chiral light pulses. Our work thus carried chiral-sensitive studies down to the femtosecond and attosecond ranges.


Attosecond High-harmonic Spectroscopy of Atoms and Molecules Using Mid-infrared Sources

Attosecond High-harmonic Spectroscopy of Atoms and Molecules Using Mid-infrared Sources

Author: Stephen Bradley Schoun

Publisher:

Published: 2015

Total Pages: 234

ISBN-13:

DOWNLOAD EBOOK

The amplitude and phase of the complex photoionization/photorecombination dipole matrix element of atoms and simple linear molecules is measured with sub-femtosecond time resolution and sub-electronvolt spectral resolution using High Harmonic Spectroscopy (HHS). The first known measurement of the dipole phase jump at a Cooper minimum is reported for the 3p orbital of argon. Also, the angle-dependent dipole of nitrogen is measured using rotationally-aligned molecular ensembles. In contrast with previous studies, which were limited by traditional shorter-wavelength near-infrared laser sources, only a single orbital is sufficient to explain the nitrogen results, which are in excellent agreement with accurate theoretical scattering-wave dipole calculations. All of these experiments benefit from the extended extreme-ultraviolet cutoff, and improved spectral resolution, afforded by the use of long-wavelength mid-infrared driving laser sources. This work extends our understanding of the interaction of light and matter on the timescale of the electron's motion, the attosecond (1 as = 10−18s). The experimental results presented here lend credence to the methodology of molecular self-imaging by laser-induced ionization and recombination of a molecule's own electron. The successes and limitations of HHS as a tool for ultrafast atomic and molecular imaging are discussed. Finally, the feasibility is examined of using HHS to measure the temporal evolution of complicated chemical dynamics with attosecond precision.


Attosecond Molecular Dynamics

Attosecond Molecular Dynamics

Author: Marc J J Vrakking

Publisher: Royal Society of Chemistry

Published: 2018-08-31

Total Pages: 512

ISBN-13: 1782629955

DOWNLOAD EBOOK

Attosecond science is a new and rapidly developing research area in which molecular dynamics are studied at the timescale of a few attoseconds. Within the past decade, attosecond pump-probe spectroscopy has emerged as a powerful experimental technique that permits electron dynamics to be followed on their natural timescales. With the development of this technology, physical chemists have been able to observe and control molecular dynamics on attosecond timescales. From these observations it has been suggested that attosecond to few-femtosecond timescale charge migration may induce what has been called "post-Born-Oppenheimer dynamics", where the nuclei respond to rapidly time-dependent force fields resulting from transient localization of the electrons. These real-time observations have spurred exciting new advances in the theoretical work to both explain and predict these novel dynamics. This book presents an overview of current theoretical work relevant to attosecond science written by theoreticians who are presently at the forefront of its development. It is a valuable reference work for anyone working in the field of attosecond science as well as those studying the subject.


Homodyne High-harmonic Spectroscopy

Homodyne High-harmonic Spectroscopy

Author: Julien Beaudoin Bertrand

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

At the heart of high harmonic generation lies a combination of optical and collision physics entwined by a strong laser field. An electron, initially tunnel-ionized by the field, driven away then back in the continuum, finally recombines back to rest in its initial ground state via a radiative transition. The emitted attosecond (atto=10-̂18) XUV light pulse carries all the information (polarization, amplitude and phase) about the photorecombination continuum-to-ground transition dipolar field. Photorecombination is related to the time-reversed photoionization process. In this perspective, high-harmonic spectroscopy extends well-established photoelectron spectroscopy, based on charged particle detection, to a fully coherent one, based on light characterization. The main achievement presented in this thesis is to use high harmonic generation to probe femtosecond (femto=10-̂15) chemical dynamics for the first time. Thanks to the coherence imposed by the strong driving laser field, homodyne detection of attosecond pulses from excited molecules undergoing dynamics is achieved, the signal from unexcited molecules acting as the reference local oscillator. First, applying time-resolved high-harmonic spectroscopy to the photodissociation of a diatomic molecule, Br2 to Br + Br, allows us to follow the break of a chemical bond occurring in a few hundreds of femtoseconds. Second, extending it to a triatomic (NO2) lets us observe both the previously unseen (but predicted) early femtosecond conical intersection dynamics followed by the late picosecond statistical photodissociation taking place in the reaction NO2 to NO + O. Another important realization of this thesis is the development of a complementary technique to time-resolved high-harmonic spectroscopy called LAPIN, for Linked Attosecond Phase INterferometry. When combined together, time-resolved high-harmonic spectroscopy and LAPIN give access to the complex photorecombination dipole of aligned excited molecules. These achievements lay the basis for electron recollision tomographic imaging of a chemical reaction with unprecedented angstrom (1 angstrom= 0.1 nanometer) spatial resolution. Other contributions dedicated to the development of attosecond science and the generalization of high-harmonic spectroscopy as a novel, fully coherent molecular spectroscopy will also be presented in this thesis.


Molecular Spectroscopy and Quantum Dynamics

Molecular Spectroscopy and Quantum Dynamics

Author: Roberto Marquardt

Publisher: Elsevier

Published: 2020-09-18

Total Pages: 376

ISBN-13: 0128172355

DOWNLOAD EBOOK

Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion Presents the most recent developments in the detection and interpretation of ultra-fast phenomena Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure


Attosecond Physics

Attosecond Physics

Author: Luis Plaja

Publisher: Springer

Published: 2013-07-31

Total Pages: 281

ISBN-13: 3642376231

DOWNLOAD EBOOK

Attophysics is an emerging field in physics devoted to the study and characterization of matter dynamics in the sub-femtosecond time scale. This book gives coverage of a broad set of selected topics in this field, exciting by their novelty and their potential impact. The book is written review-like. It also includes fundamental chapters as introduction to the field for non-specialist physicists. The book is structured in four sections: basics, attosecond pulse technology, applications to measurements and control of physical processes and future perspectives. It is a valuable reference tool for researchers in the field as well as a concise introduction to non-specialist readers.


Symmetry and High Harmonic Spectroscopy in Solids

Symmetry and High Harmonic Spectroscopy in Solids

Author: Shima Gholam Mirzaeimoghadar

Publisher:

Published: 2020

Total Pages: 137

ISBN-13:

DOWNLOAD EBOOK

Due to their unique temporal resolution, high harmonic pulses are capable of probing rapidly occurring phenomena such as carrier interactions and phase transition dynamics. For this reason, it is desirable to develop harmonic sources with few-femtosecond to attosecond pulse durations. I take advantage of nonlinear compression in a bulk crystal to compress the mid-infrared laser pulse to


Attosecond and XUV Physics

Attosecond and XUV Physics

Author: Thomas Schultz

Publisher: John Wiley & Sons

Published: 2013-11-13

Total Pages: 624

ISBN-13: 3527677658

DOWNLOAD EBOOK

This book provides fundamental knowledge in the fields of attosecond science and free electron lasers, based on the insight that the further development of both disciplines can greatly benefit from mutual exposure and interaction between the two communities. With respect to the interaction of high intensity lasers with matter, it covers ultrafast lasers, high-harmonic generation, attosecond pulse generation and characterization. Other chapters review strong-field physics, free electron lasers and experimental instrumentation. Written in an easy accessible style, the book is aimed at graduate and postgraduate students so as to support the scientific training of early stage researchers in this emerging field. Special emphasis is placed on the practical approach of building experiments, allowing young researchers to develop a wide range of scientific skills in order to accelerate the development of spectroscopic techniques and their implementation in scientific experiments. The editors are managers of a research network devoted to the education of young scientists, and this book idea is based on a summer school organized by the ATTOFEL network.