Cliff Berg shows how to design high-assurance applications that build in reliability, security, manageability, and maintainability upfront. He draws on real-world scenarios and actual applications, focusing heavily on the activities and relationships associated with building superior software.
Service computing is a cutting-edge area, popular in both industry and academia. New challenges have been introduced to develop service-oriented systems with high assurance requirements. High Assurance Services Computing captures and makes accessible the most recent practical developments in service-oriented high-assurance systems. An edited volume contributed by well-established researchers in this field worldwide, this book reports the best current practices and emerging methods in the areas of service-oriented techniques for high assurance systems. Available results from industry and government, R&D laboratories and academia are included, along with unreported results from the “hands-on” experiences of software professionals in the respective domains. Designed for practitioners and researchers working for industrial organizations and government agencies, High Assurance Services Computing is also suitable for advanced-level students in computer science and engineering.
Microprocessors increasingly control and monitor our most critical systems, including automobiles, airliners, medical systems, transportation grids, and defense systems. The relentless march of semiconductor process technology has given engineers exponentially increasing transistor budgets at constant recurring cost. This has encouraged increased functional integration onto a single die, as well as increased architectural sophistication of the functional units themselves. Additionally, design cycle times are decreasing, thus putting increased schedule pressure on engineers. Not surprisingly, this environment has led to a number of uncaught design flaws. Traditional simulation-based design verification has not kept up with the scale or pace of modern microprocessor system design. Formal verification methods offer the promise of improved bug-finding capability, as well as the ability to establish functional correctness of a detailed design relative to a high-level specification. However, widespread use of formal methods has had to await breakthroughs in automated reasoning, integration with engineering design languages and processes, scalability, and usability. This book presents several breakthrough design and verification techniques that allow these powerful formal methods to be employed in the real world of high-assurance microprocessor system design.
"Applications of Neural Networks in High Assurance Systems" is the first book directly addressing a key part of neural network technology: methods used to pass the tough verification and validation (V&V) standards required in many safety-critical applications. The book presents what kinds of evaluation methods have been developed across many sectors, and how to pass the tests. A new adaptive structure of V&V is developed in this book, different from the simple six sigma methods usually used for large-scale systems and different from the theorem-based approach used for simplified component subsystems.
This book describes the key concepts, principles and implementation options for creating high-assurance cloud computing solutions. The guide starts with a broad technical overview and basic introduction to cloud computing, looking at the overall architecture of the cloud, client systems, the modern Internet and cloud computing data centers. It then delves into the core challenges of showing how reliability and fault-tolerance can be abstracted, how the resulting questions can be solved, and how the solutions can be leveraged to create a wide range of practical cloud applications. The author’s style is practical, and the guide should be readily understandable without any special background. Concrete examples are often drawn from real-world settings to illustrate key insights. Appendices show how the most important reliability models can be formalized, describe the API of the Isis2 platform, and offer more than 80 problems at varying levels of difficulty.
The purpose of this book is to provide a practical approach to managing security in FPGA designs for researchers and practitioners in the electronic design automation (EDA) and FPGA communities, including corporations, industrial and government research labs, and academics. This book combines theoretical underpinnings with a practical design approach and worked examples for combating real world threats. To address the spectrum of lifecycle and operational threats against FPGA systems, a holistic view of FPGA security is presented, from formal top level speci?cation to low level policy enforcement mechanisms, which integrates recent advances in the ?elds of computer security theory, languages, compilers, and hardware. The net effect is a diverse set of static and runtime techniques that, working in coope- tion, facilitate the composition of robust, dependable, and trustworthy systems using commodity components. We wish to acknowledge the many people who helped us ensure the success of ourworkonrecon?gurablehardwaresecurity.Inparticular,wewishtothankAndrei Paun and Jason Smith of Louisiana Tech University for providing us with a Lin- compatible version of Grail+. We also wish to thank those who gave us comments on drafts of this book, including Marco Platzner of the University of Paderborn, and Ali Irturk and Jason Oberg of the University of California, San Diego. This research was funded in part by National Science Foundation Grant CNS-0524771 and NSF Career Grant CCF-0448654.
Front Cover; Dedication; Embedded Systems Security: Practical Methods for Safe and Secure Softwareand Systems Development; Copyright; Contents; Foreword; Preface; About this Book; Audience; Organization; Approach; Acknowledgements; Chapter 1 -- Introduction to Embedded Systems Security; 1.1What is Security?; 1.2What is an Embedded System?; 1.3Embedded Security Trends; 1.4Security Policies; 1.5Security Threats; 1.6Wrap-up; 1.7Key Points; 1.8 Bibliography and Notes; Chapter 2 -- Systems Software Considerations; 2.1The Role of the Operating System; 2.2Multiple Independent Levels of Security.