In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are mainly evaluated within the phoneme recognition task under the Hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) paradigm. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron (MLP). Additionally, the output of the first level is used as an input for the second level. This system can be substantially speeded up by removing the redundant information contained at the output of the first level.
In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are mainly evaluated within the phoneme recognition task under the Hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) paradigm. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron (MLP). Additionally, the output of the first level is used as an input for the second level. This system can be substantially speeded up by removing the redundant information contained at the output of the first level.
This volume constitutes selected papers presented at the Third International Conference on Artificial Intelligence and Speech Technology, AIST 2021, held in Delhi, India, in November 2021. The 36 full papers and 18 short papers presented were thoroughly reviewed and selected from the 178 submissions. They provide a discussion on application of Artificial Intelligence tools in speech analysis, representation and models, spoken language recognition and understanding, affective speech recognition, interpretation and synthesis, speech interface design and human factors engineering, speech emotion recognition technologies, audio-visual speech processing and several others.
This volume contains the proceedings of NOLISP 2009, an ISCA Tutorial and Workshop on Non-Linear Speech Processing held at the University of Vic (- talonia, Spain) during June 25-27, 2009. NOLISP2009wasprecededbythreeeditionsofthisbiannualeventheld2003 in Le Croisic (France), 2005 in Barcelona, and 2007 in Paris. The main idea of NOLISP workshops is to present and discuss new ideas, techniques and results related to alternative approaches in speech processing that may depart from the mainstream. In order to work at the front-end of the subject area, the following domains of interest have been de?ned for NOLISP 2009: 1. Non-linear approximation and estimation 2. Non-linear oscillators and predictors 3. Higher-order statistics 4. Independent component analysis 5. Nearest neighbors 6. Neural networks 7. Decision trees 8. Non-parametric models 9. Dynamics for non-linear systems 10. Fractal methods 11. Chaos modeling 12. Non-linear di?erential equations The initiative to organize NOLISP 2009 at the University of Vic (UVic) came from the UVic Research Group on Signal Processing and was supported by the Hardware-Software Research Group. We would like to acknowledge the ?nancial support obtained from the M- istry of Science and Innovation of Spain (MICINN), University of Vic, ISCA, and EURASIP. All contributions to this volume are original. They were subject to a doub- blind refereeing procedure before their acceptance for the workshop and were revised after being presented at NOLISP 2009.
Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks.
This intriguing book constitutes the thoroughly refereed postproceedings of the International Conference on Non-Linear Speech Processing, NOLISP 2007, held in Paris, France, in May 2007. The 24 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on nonlinear and non-conventional techniques, speech synthesis, speaker recognition, speech recognition, and many other subjects.
This two-volume proceedings compiles a selection of research papers presented at the ICANN-91. The scope of the volumes is interdisciplinary, ranging from mathematics and engineering to cognitive sciences and biology. European research is well represented. Volume 1 contains all the orally presented papers, including both invited talks and submitted papers. Volume 2 contains the plenary talks and the poster presentations.
Hierarchy is a central feature in the organisation of complex biological systems and particularly the structure and function of neural networks. While other aspects of brain connectivity such as regionalisation, modularity or motif composition have been discussed elsewhere, no detailed analysis has been presented so far on the role of hierarchy and its connection to brain dynamics. Recent discussions among many of our colleagues have shown an increasing interest in hierarchy (of spatial, temporal and dynamic features), and this is an emerging key question in neuroscience as well as generally in the field of network science, due to its links with concepts of control, efficiency and development across scales (e.g. Hilgetag et al. Science, 1996; Ravasz et al. Science, 2002; Bassett et al. PNAS, 2006; Mueller-Linow et al. PLoS Comp. Biol., in press). The proposed Research Topic will address recent findings from a theoretical as well as experimental perspective including contributions under the following four headings: 1) Topology: Detecting and characterizing network hierarchy; 2) Experiments: Neural dynamics across hierarchical scales; 3) Dynamics: Activity spread, oscillations, and synchronization in hierarchical networks; 4) Dynamics: Stable functioning and information processing in hierarchical networks.
This book unveils the most advanced techniques and innovative applications in the natural language processing (NLP) field. It uncovers the secrets to enhancing language understanding, and presents practical solutions to different NLP tasks, as text augmentation, paraphrase generation, and restoring spaces and punctuation in multiple languages. It unlocks the potential of hierarchical multi-task learning for cross-lingual phoneme recognition, and allows readers to explore more real-world applications such as error correction, aggregating industrial security findings as well as predicting music emotion values from social media conversations. "Practical Solutions for Diverse Real-World NLP Applications" is the suitable guidebook for researchers, students, and practitioners as it paves the way for them by delivering invaluable insights and knowledge.