Photocatalysis is a reaction which is accelerated by light while a heterogeneous reaction consists of two phases ( a solid and a liquid for example). Heterogeneous Photocatalysis is a fast developing science which to date has not been fully detailed in a monograph. This title discusses the basic principles of heterogeneous photocatalysis and describes the bulk and surface properties of semiconductors. Applications of various types of photoreactions are described and the problems related to the modeling and design of photoreactors are covered.
A comprehensive volume on photocatalytic functional materials for environmental remediation As the need for removing large amounts of pollution and contamination in air, soil, and water grows, emerging technologies in the field of environmental remediation are of increasing importance. The use of photocatalysis—a green technology with enormous potential to resolve the issues related to environmental pollution—breaks down toxic organic compounds to mineralized products such as carbon dioxide and water. Due to their high performance, ease of fabrication, long-term stability, and low manufacturing costs, photofunctional materials constructed from nanocomposite materials hold great potential for environmental remediation. Photocatalytic Functional Materials for Environmental Remediation examines the development of high performance photofunctional materials for the treatment of environmental pollutants. This timely volume assembles and reviews a broad range of ideas from leading experts in fields of chemistry, physics, nanotechnology, materials science, and engineering. Precise, up-to-date chapters cover both the fundamentals and applications of photocatalytic functional materials. Semiconductor-metal nanocomposites, layered double hydroxides, metal-organic frameworks, polymer nanocomposites, and other photofunctional materials are examined in applications such as carbon dioxide reduction and organic pollutant degradation. Providing interdisciplinary focus to green technology materials for the treatment of environmental pollutants, this important work: Provides comprehensive coverage of various photocatalytic materials for environmental remediation useful for researchers and developers Encompasses both fundamental concepts and applied technology in the field Focuses on novel design and application of photocatalytic materials used for the removal of environmental contaminates and pollution Offers in-depth examination of highly topical green-technology solutions Presents an interdisciplinary approach to environmental remediation Photocatalytic Functional Materials for Environmental Remediation is a vital resource for researchers, engineers, and graduate students in the multi-disciplinary areas of chemistry, physics, nanotechnology, environmental science, materials science, and engineering related to photocatalytic environmental remediation.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "Mechanochemical Forces as a Synthetic Tool for Zero and One-Dimensional Titanium Oxide-Based Nano-photocatalysts" is available open access under a CC BY 4.0 License via link.springer.com.
This book presents a unique collection of up-to-date applications of graphene for water science. Because water is an invaluable resource and the intelligent use and maintenance of water supplies is one of the most important and crucial challenges that stand before mankind, new technologies are constantly being sought to lower the cost and footprint of processes that make use of water resources as potable water as well as water for agriculture and industry, which are always in desperate demand. Much research is focused on graphene for different water treatment uses. Graphene, whose discovery won the 2010 Nobel Prize in physics, has been a shining star in the material science in the past few years. Owing to its interesting electrical, optical, mechanical and chemical properties, graphene has found potential applications in a wide range of areas, including water purification technology. A new type of graphene-based filter could be the key to managing the global water crisis. According to the World Economic Forum's Global Risks Report, lack of access to safe, clean water is the biggest risk to society over the coming decade. Yet some of these risks could be mitigated by the development of this filter, which is so strong and stable that it can be used for extended periods in the harshest corrosive environments, and with less maintenance than other filters on the market. The graphene-based filter could be used to filter chemicals, viruses, or bacteria from a range of liquids. It could be used to purify water, dairy products or wine, or in the production of pharmaceuticals. This book provides practical information to all those who are involved in this field.
Handbook of Nanotechnology Applications: Environment, Energy, Agriculture and Medicine presents a comprehensive overview on recent developments and prospects surrounding nanotechnology use in water/wastewater separation and purification, energy storage and conversion, agricultural and food process, and effective diagnoses and treatments in medical fields. The book includes detailed overviews of nanotechnology, including nanofiltration membrane for water/wastewater treatment, nanomedicine and nanosensor development for medical implementation, advanced nanomaterials of different structural dimensions (0D, 1D, 2D and 3D) for energy applications, as well as food and agricultural utilization. Other sections discuss the challenges of lab-based research transitioning towards practical industrial use. - Helps scientists and researchers quickly learn and understand the key role of nanotechnology in important industrial applications - Takes an interdisciplinary approach, demonstrating how nanotechnology is being used in a wide range of industry sectors - Outlines the role nanotechnology plays in creating safer, cheaper and more energy-efficient projects and devices
This book underscores the essential principles of photocatalysis and provides an update on its scientific foundations, research advances, and current opinions, and interpretations. It consists of an introduction to the concepts that form the backbone of photocatalysis, from the principles of solid-state chemistry and physics to the role of reactive oxidizing species. Having recognised the organic link with chemical kinetics, part of the book describes kinetic concepts as they apply to photocatalysis. The dependence of rate on the reaction conditions and parameters is detailed, the retrospective and prospective aspects of the mechanism of photocatalysis are highlighted, and the adsorption models, photocatalytic rate expressions, and kinetic disguises are examined. This book also discusses the structure, property, and activity relationship of prototypical semiconductor photocatalysts and reviews how to extend their spectral absorption to the visible region to enable the effective use of visible solar spectrum. Lastly, it presents strategies for deriving substantially improved photoactivity from semiconductor materials to support the latest applications and potential trends.
Surface Science of Photocatalysis, Volume 32, summarizes significant findings on the surface science behind various classic and novel photocatalysts for energy and environmental applications, with special emphasis on important surface/interface processes in photocatalysis, such as interfacial charge transfer, function of co-catalysts, and adsorption over photocatalyst surface. This book timely and systematically reviews the state-of-the-art of the surface science in semiconductor-based photocatalysis, serving as a useful reference book for both new and experienced researchers in this field.
Photocatalysis: Fundamental Processes and Applications, Volume 32 in the Interface Science and Technology Series, discusses the fundamental aspects of photocatalysis and its process and applications to the decontamination of wastewater, hydrogen production via water splitting, and photo reduction of carbon dioxide to hydrocarbon. The book discusses the fundamental aspects of all applications together with their proper mechanisms, thus providing essential information for deep research in the area of clean environment and green energy production. - Provides background on the fundamental and experimental processes of photocatalysis - Covers photocatalysis and its impact on creating a clean environment and energy sources - Applies photocatalysis to the decontamination of wastewater, hydrogen production via water splitting, and photo reduction of carbon dioxide to hydrocarbon - Edited by a world-leading researcher in interface science
A unique book that summarizes the properties, toxicology, and biomedical applications of TiO2-based nanoparticles Nanotechnology is becoming increasingly important for products used in our daily lives. Nanometer-sized titanium dioxide (TiO2) are widely used in industry for different purposes, such as painting, sunscreen, printing, cosmetics, biomedicine, and so on. This book summarizes the advances of TiO2 based nanobiotechnology and nanomedicine, covering materials properties, toxicological research, and biomedical application, such as antibacter, biosensing, and cancer theranostics. It uniquely integrates the TiO2 applications from physical properties, toxicology to various biomedical applications, and includes black TiO2 based cancer theranostics. Beginning with a comprehensive introduction to the properties and applications of nanoparticles, TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine offers chapters on: Toxicity of TiO2 Nanoparticles; Antibacterial Applications of TiO2 Nanoparticles; Surface Enhanced Raman Spectrum of TiO2 Nanoparticle for Biosensing (TiO2 Nanoparticle Served as SERS Sensing Substrate); TiO2 as Inorganic Photosensitizer for Photodynamic Therapy; Cancer Theranostics of Black TiO2 Nanoparticles; and Neurodegenerative Disease Diagnostics and Therapy of TiO2-Based Nanoparticles. This title: Blends the physical properties, toxicology of TiO2 nanoparticles to the many biomedical applications Includes black TiO2 based cancer theranostics in its coverage Appeals to a broad audience of researchers in academia and industry working on nanomaterials-based biosensing, drug delivery, nanomedicine TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine is an ideal book for medicinal chemists, analytical chemists, biochemists, materials scientists, toxicologists, and those in the pharmaceutical industry.
Inorganic Pollutants in Water provides a clear understanding of inorganic pollutants and the challenges they cause in aquatic environments. The book explores the point of source, how they enter water, the effects they have, and their eventual detection and removal. Through a series of case studies, the authors explore the success of the detection and removal techniques they have developed. Users will find this to be a single platform of information on inorganic pollutants that is ideal for researchers, engineers and technologists working in the fields of environmental science, environmental engineering and chemical engineering/ sustainability. Through this text, the authors introduce new researchers to the problem of inorganic contaminants in water, while also presenting the current state-of-the-art in terms of research and technologies to tackle this problem.