Explore the environmental applications of heterogeneous nanocatalysis in the field of alternative energy production In Volume 2: Environmental Applications of Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, a team of distinguished researchers discusses the foundational concepts and practical applications of heterogeneous nanocatalysis for alternative energy production. Volume 2 focuses on the purification of auto exhaust pollutants and volatile organic compounds, as well as CO2 conversion and wastewater treatment over a range of nano-sized catalysts.
An essential companion for catalysis researchers and professionals studying economically viable and eco-friendly catalytic strategies for energy conversion In the two-volume Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, a team of distinguished researchers deliver a comprehensive discussion of fundamental concepts in, and practical applications of, heterogeneous nanocatalysis for alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection. The volumes cover the design and catalytic performance of various nanocatalysts, including nanosized metals and metal oxides, supported metal nanoparticles, inverse oxide-metal nanocatalysts, core-shell nanocatalysts, nanoporous zeolites, nanocarbon composites, and metal oxides in confined spaces. Each chapter contains a critical discussion of the opportunities and challenges posed by the use of nanosized catalysts for practical applications. Volume 1 – Energy Applications focuses on the conversion of renewable energy (biomass/solar) into green fuels and chemicals, ammonia synthesis, clean hydrogen production, and electrochemical energy conversion processes using a variety of nanosized catalysts. It also offers: A thorough introduction to heterogeneous catalysis and nanocatalysis, as well as a discussion of catalytic active sites at nano-scale range Comprehensive explorations of the methods for control and activation of nanosized catalysts Practical discussions of C3N4-based nanohybrid catalysts for solar hydrogen production via water splitting Nanosized catalysts in visible light photocatalysis for sustainable organic synthesis Applications of MXenes in electrocatalysis Perfect for researchers, postgraduate students, chemists, and engineers interested in heterogeneous catalysis and nanocatalysis, Heterogeneous Nanocatalysis for Energy and Environmental Sustainability will also earn a place in the libraries of professionals working in alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection.
Did you know that 95% of chemicals in industry are synthesized using catalysts? Sustainable Green Catalytic Processes offer concise descriptions of the application of catalysts in orchestrating eco-friendly transformation. These catalysts have enhanced selectivity for desired products while minimizing the creation of unwanted products. The book aims to present a collection of chapters related to green synthesis and methodologies and their applications in catalysis. These approaches have garnered attention from scientists in developing sustainable catalyst protocols that are environmentally greener and eco-friendly. This book aims to present a collection of chapters related to green synthesis and methodologies to motivate biochemists and engineers to provide a more sustainable environmental process. The first chapter focuses on the creation of ecologically friendly chemical processes. Another chapter frames the recent advances in heterogeneous photocatalysis and its applications. The book gives insights into the mechanisms underlying the total synthesis and functionalization of natural products through light-driven reactions. It reflects the new challenges as the chemical industry transitions to environmentally friendly and sustainable chemistry.
An essential companion for catalysis researchers and professionals studying economically viable and eco-friendly catalytic strategies for energy conversion In the two-volume Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, a team of distinguished researchers deliver a comprehensive discussion of fundamental concepts in, and practical applications of, heterogeneous nanocatalysis for alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection. The volumes cover the design and catalytic performance of various nanocatalysts, including nanosized metals and metal oxides, supported metal nanoparticles, inverse oxide-metal nanocatalysts, core-shell nanocatalysts, nanoporous zeolites, nanocarbon composites, and metal oxides in confined spaces. Each chapter contains a critical discussion of the opportunities and challenges posed by the use of nanosized catalysts for practical applications. Volume 1 – Energy Applications focuses on the conversion of renewable energy (biomass/solar) into green fuels and chemicals, ammonia synthesis, clean hydrogen production, and electrochemical energy conversion processes using a variety of nanosized catalysts. It also offers: A thorough introduction to heterogeneous catalysis and nanocatalysis, as well as a discussion of catalytic active sites at nano-scale range Comprehensive explorations of the methods for control and activation of nanosized catalysts Practical discussions of C3N4-based nanohybrid catalysts for solar hydrogen production via water splitting Nanosized catalysts in visible light photocatalysis for sustainable organic synthesis Applications of MXenes in electrocatalysis Perfect for researchers, postgraduate students, chemists, and engineers interested in heterogeneous catalysis and nanocatalysis, Heterogeneous Nanocatalysis for Energy and Environmental Sustainability will also earn a place in the libraries of professionals working in alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection.
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Switchable Solvents explores the preparation, properties, chemical processes and applications of this class of green solvents. The book provides an in-depth overview on the area of switchable solvents in various industrial applications, focusing on the purification and extraction of chemical compounds utilizing green chemistry protocols that include liquid-liquid, solid-liquid, liquid-gas and lipids separation technologies. In addition, it includes recent advances in greener extraction and separation processes. This book will be an invaluable guide to students, professors, scientists and R&D industrial specialists working in the field of sustainable chemistry, organic, analytical, chemical engineering, environmental and pharmaceutical sciences. - Provides a broad overview of switchable solvents in sustainable chemical processes - Compares the use of switchable solvents as greener solvents over conventional solvents - Outlines eco-friendly organic synthesis and chemical processes using switchable solvents - Lists various industrial separations/extraction processes using switchable solvents
An authoritative summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application for environmental sustainability Green Synthesis of Nanomaterials for Bioenergy Applications is an important guide that provides information on the fabrication of nanomaterial and the application of low cost, green methods. The book also explores the impact on various existing bioenergy approaches. Throughout the book, the contributors—noted experts on the topic—offer a reliable summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application to the field of environmental sustainability. The green synthesis of nanoparticles process has been widely accepted as a promising technique that can be applied to a variety of fields. The green nanotechnology-based production processes to fabricate nanomaterials operates under green conditions without the intervention of toxic chemicals. The book’s exploration of more reliable and sustainable processes for the synthesis of nanomaterials, can lead to the commercial application of the economically viability of low-cost biofuels production. This important book: Summarizes the quest for an environmentally sustainable synthesis process of nanomaterials for their application to the field of environmental sustainability Offers an alternate, sustainable green energy approach that can be commercially implemented worldwide Covers recent approaches such as fabrication of nanomaterial that apply low cost, green methods and examines its impact on various existing bioenergy applications Written for researchers, academics and students of nanotechnology, nanosciences, bioenergy, material science, environmental sciences, and pollution control, Green Synthesis of Nanomaterials for Bioenergy Applications is a must-have guide that covers green synthesis and characterization of nanomaterials for cost effective bioenergy applications.
Pollution has been a developing problem for quite some time in the modern world, and it is no secret how these chemicals negatively affect the environment. With these contaminants penetrating the earth’s water supply, affecting weather patterns, and threatening human health, it is critical to study the interaction between commercially produced chemicals and the overall ecosystem. Understanding the nature of these pollutants, the extent in which they are harmful to humans, and quantifying the total risks are a necessity in protecting the future of our world. The Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry is an essential reference source that discusses the process of chemical contributions and their behavior within the environment. Featuring research on topics such as organic pollution, biochemical technology, and food quality assurance, this book is ideally designed for environmental professionals, researchers, scientists, graduate students, academicians, and policymakers seeking coverage on the main concerns, approaches, and solutions of ecological chemistry in the environment.
Biotechnology is a multidisciplinary field encompassing microbiology, bichemistry, genetics, molecular biology, chemistry, immunology, cell and tissue culture physiology. This book describes the recent developments in these areas. Current research topics such as Quorum sensing, Integrons, Phytomining are discussed, which would serve as an excellent reference work for both academicians and researchers in the field.
Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.