This work delineates the effect of different reaction variables on the outcome of heterogeneously catalyzed reactions, and explains how to optimize the product yield of specific compounds. Metal catalysis, simple and complex oxides, zeolites and clays are discussed, both as catalysts and as potential supports for catalytically active metals.
This work delineates the effect of different reaction variables on the outcome of heterogeneously catalyzed reactions, and explains how to optimize the product yield of specific compounds. Metal catalysis, simple and complex oxides, zeolites and clays are discussed, both as catalysts and as potential supports for catalytically active metals.
Heterogeneous Catalysis in Sustainable Synthesis is a practical guide to the use of solid catalysts in synthetic chemistry that focuses on environmentally benign applications. Collating essential information on solid catalysts into a single volume, it reveals how the efficient use of heterogeneous catalysts in synthetic chemistry can support sustainable applications. Beginning with a review of the fundamentals of heterogeneous catalytic synthesis, the book then explores the basic concepts of heterogeneous catalytic reactions from adsorption to catalyst poisons, the use of non-traditional activation methods, recommended solvents, the major types of both metal and non-metal solid catalysts, and applications of these catalysts in sustainable synthesis. Based on the extensive experience of its expert author, this book aims to encourage and support synthetic chemists in using solid catalysts in their own work, while also highlighting the important link between heterogeneous catalysis and sustainability to all those interested. - Combines foundational knowledge with a focus on practical applications - Organizes information by reaction type, allowing readers to easily find examples of how to carry out specific reaction types with solid catalysts - Highlights emerging areas such as nanoparticle catalysis and metal-organic framework (MOF) based catalysts
The features of this book which will be of special interest to academic organic chemists are the introduction (Chapter 1), which presents a short course on the concepts and language of heterogeneous catalysis, covers organic reaction mechanisms of hydrogenation (Chapter 2), hydrogenolysis (Chapter 4), and oxidation (Chapter 6), a presents problems and solutions specific for running heterogeneous catalytic organic reactions in solution. These materials can supplement advanced chemistry courses. Most synthetic organic chemists use a variety of "protecting groups" which they attach to functional groups (reactive groups of atoms) while some reaction is being conducted on another part of the molecule. These protecting groups prevent reactions of the functional groups during other reactions and are removed later by a heterogeneous catalytic method called hydrogenolysis. One unique feature of this book, not found in other books on catalysis, is an exhaustive chapter (Chapter 4) on hydrogenolysis, which is dredged from the recent synthetic literature published by modern organic chemists. Academic organic chemists should find this chapter extremely useful and may wish to adopt the book as a supplement for advanced organic chemistry courses designed for seniors and for graduate students. It will also be useful for professors and their research groups engaged in synthetic organic chemistry. Many academic organic chemists are not aware of recent advances in heterogeneous enantioselective catalysis (Chapter 3) or in selective low temperature, liquid phase heterogeneous catalytic oxidations by hydrogen peroxide (Chapter 6). These specialty topics are timely and may be new to academic organic chemists and can be used to supplement their advanced courses. Several features of this book will also be of special interest to industrial chemists who are unfamiliar with heterogeneous catalysis. Many good organic chemists are hire by industry. They synthesize a new compound using standard organic synthetic techniques but are informed by their supervisor that they must convert some of their synthetic steps into heterogeneous catalytic steps. They may not have been exposed to heterogeneous catalysis and have few places to turn. This book offers them a crash course in heterogeneous catalysis as well as many examples of reactions and conditions with which they can start their search. Those industrial organic chemists already familiar with heterogeneous catalysis will find this book useful as a reference to many examples in the recent literature. They will find recent surface science discoveries correlated with heterogeneous catalysis or organic reactions and mechanistic suggestions designed to stimulate innovative nontraditional thinking about organic reactions on surfaces. - Written by organic chemists for organic chemists - Introduces heterogeneous catalysis concepts and language - Presents a comprehensive compilation of protecting group removal procedures - Covers liquid-phase hydrogenations, hydrogenolysis, and oxidations - Addresses heterogeneous methods for producing pure enantiomers of chiral products - Examines the emerging field of heterogenized homogeneous catalysts - Mixes practical applications with mechanistic interpretations
It was a great honor for us to organize ChiCat, a symposium devoted to Chiral Reactions in Heterogeneous Catalysis and to be the hostsofmore than 120 scientists coming from everywhere in the industrialized world, to celebrate together one century of existence ofInstitut Meurice. This school was established in 1892when an industrial chemist, named Albert Meurice, decided to educate practical chemists according to the perceived needs ofthe industry ofthat time. This is exactly what we are still trying to do. It is the reason why, thirty years ago, we started a research activity in catalysis, and why we progressively devote this research to the applications of catalysis in the field of fine chemicals. In this respect, we are very close to another initiative of Albert Meurice, who started the first production of synthetic pharmaceuticals in Belgium during World War I. This business later on became a part ofthe Belgian corporation DCB, still very active in pharmaceuticals today. The school created by Albert Meurice merged in the fifties with another school that had been created to meet the same needs in the field of the food industries, mainly distilleries and breweries. This merger was done in the frame of the establishment of CERIA. For people in catalysis, ceria stands for cerium oxide, but for those who engineered the concept, CERIA stood for Center of Education and Research for the Food and Chemical Industries.
Numerous examples are known of the application of catalyzed hydrogenation and hydrogenolysis reactions in synthetic organic chemistry. However, catalyst and reaction conditions are often chosen on the analogy of literature data without a good knowledge of the influence of reaction variables and of the structure of the reactant on the various possible modes of reaction. In order to improve such an intuitive procedure it is essential to dispose of an understanding of the reaction mechanisms which are operative in hydrogena tion and hydrogenolysis reactions and which govern i.a. the selectivity of a given pathway with respect to consecutive and parallel reactions. Although organic chemistry and, in particular, hydrogenation and hydro genolysis reactions remain an experimental science this book has been written to give the organic chemist the insight and know-how necessary to apply these reactions successfully to synthetic problems. I warmly recommend it as a book which will enable the organic chemist to rationalize many of the phenomena of catalytic hydrogenation and hydrogenolysis reactions, whereby it surely helps the organic chemist to solve forthcoming synthetic problems in this field. In addition, it seems to me a useful book for physical and physical-organic chemists working in the field of homogeneous and heterogeneous catalysis. Finally, the ten years' experience of both authors in the field of catalysis and synthetic organic chemistry - as reflected by some forty publications guarantees a well-considered review containing many examples directly from the bench.
Catalysis underpins most modern industrial organic processes. It has become an essential tool in creating a 'greener' chemical industry by replacing more traditional stoichiometric reactions, which have high energy consumption and high waste production, with mild processes which increasingly resemble Nature's enzymes. Metal-Catalysis in Industrial Organic Processes considers the major areas of the field and discusses the logic of using catalysis in industrial processes. The book provides information on oxidation, hydrogenation, carbonylation, C-C bond formation, metathesis and polymerization processes, as well as on the mechanisms involved. In addition two appendices offer a concise treatment of homogeneous and heterogenous catalysis. Numerous exercises referring to problems of catalytic processes, and research perspectives complete the book. This definitive reference source, written by practising experts in the field, provides detailed and up-to-date information on key aspects of metal catalysis.
Nowadays, the chemical industry is under increased pressure to develop cleaner production processes and technologies. Much effort is devoted to the development of heterogeneous catalysts and their application in industrial-scale organic synthesis. This handbook concentrates on current attempts, focusing on fine chemical production. With contributions from an impressive array of international experts, this is essential reading for everyone interested in the advances in this field.
- der Titel passt hervorragend in unsere Reihe "Green Chemistry" - das Buch hat mit Roger A. Sheldon und zwei seiner Mitarbeiter exzellente Autoren, so dass das Buch "aus einem Guss" geschrieben werden wird. - es ist das erste Buch auf dem Markt, welches die Katalyse aus der Sicht der "Green Chemistry" beschreibt
Contemporary Chemical Approaches for Green and Sustainable Drugs provides readers with the knowledge they need to integrate sustainable approaches into their work. Sections cover different aspects of green and sustainable drug development from design to disposal, including computer-aided drug design, green resourcing of drugs and drug candidates, an overview of the health concerns of pharmaceutical pollution, and a survey of potential chemical methods for its reduction. Drawing together the knowledge of a global team of experts, this book provides an inclusive overview of the chemical tools and approaches available for minimizing the negative environmental impact of current and newly developed drugs. This will be a useful guide for all academic and industrial researchers across green and sustainable chemistry, medicinal chemistry, environmental chemistry and pharmaceutical science. - Provides an integrative overview of the environmental risks of drugs and drug by products to support chemists in pre-emptively addressing these issues - Highlights the advantages of computer-aided drug design, green and sustainable sourcing, and novel methods for the production of safer, more effective drugs - Presents individual chapters written by renowned experts with diverse backgrounds - Reflects research in practice through selected case studies and extensive state-of-the-art reference sections to serve as a starting point in the design of any specialized environmentally-conscious medicinal chemistry project