Over 400 years ago, Swiss alchemist and physician Paracelsus (1493-1541) cited: "All substances are poisons; there is none that is not a poison. The right dose differentiates a poison from a remedy." This is often condensed to: "The dose makes the poison." So, why are we overtly anxious about intoxications?In fact, poisons became a global problem with the industrial revolution. Pesticides, asbestos, occupational chemicals, air pollution, and heavy metal toxicity maintain high priority worldwide, especially in developing countries. Children between 0 and 5 years old are the most vulnerable to both acute and chronic poisonings, while older adults suffer from the chronic effects of chemicals. This book aims to raise awareness about the challenges of poisons, to help clinicians understand current issues in toxicology.
The term “heavy metals” is used as a group name of toxic metals and metalloids (semimetals) causing contaminations and ecotoxicity. In strict chemical sense the density of heavy metals is higher than 5 g/cm3. From biological point of view as microelements they can be divided into two major groups. a. For their physiological function organisms and cells require essential microelements such as iron, chromium (III), cobalt, copper, manganese, molidenium, zinc. b. The other group of heavy metals is toxic to the health or environment. Of highest concern are the emissions of As, Cd, Co, Cu, Hg, Mn, Ni, Pb, Sn, Tl. The toxicity of heavy metals is well known at organizational level, while less attention has been paid to their cellular effects. This book describes the toxicity of heavy metals on microorganisms, yeast, plant and animal cells. Other chapters of the book deal with their genotoxic, mutagenic and carcinogenic effects. The toxicity of several metals touch upon the aspects of environmental hazard, ecosystems and human health. Among the cellular responses of heavy metals irregularities in cellular mechanisms such as gene expression, protein folding, stress signaling pathways are among the most important ones. The final chapters deal with biosensors and removal of heavy metals. As everybody is eating, drinking and exposed to heavy metals on a daily basis, the spirit of the book will attract a wide audience.
Essentials of Toxicology for Health Protection is a key handbook and course reader for all health protection professionals. It covers the basics of toxicology and its application to issues of topical concern including contaminated land, water pollution and traditional medicines.
In recent years, urbanization and industrialization have produced large amounts of heavy metals, which are highly toxic to both humans and the environment. This book presents a comprehensive overview of heavy metals including their physiochemical properties, toxicity, transfer in the environment, legislation, environmental impacts, and mitigation measures. Written by experts in the field, chapters include scientific research as well as case studies.
This book is concerned with heavy metals, which are considered to be the most hazardous pollutants present in the water system. Heavy metals are extensively studied and their effects on human health are reviewed here. Although several adverse health effects of heavy metals are known for a long time, exposure to heavy metals continues and is even increasing in some parts of the world. This books deals with the source of heavy metals in the environment and possible mitigation measures for metal recovery. The technology available for the detection of heavy metals and the latest remediation techniques are also discussed in detail. In this way, the book also addresses general background to polymers and their composite materials for removal of specific toxic heavy metals from waste water. The different adsorption isotherm models and adsorption mechanism using biosorption methods are also described. The widespread applications of low-value agricultural products, ion-exchange, coagulation, precipitation, flocculation, ultra-filtration and electrochemical methods are mentioned. The book reviews the essential issues and will be of interest to academicians, research scholars and industries. It will be the precious resource for all undergraduate and postgraduate students at institutes and universities.
Cancer risk factors include exposure to certain substances, which may contribute to the development of cancer. However, substances can have different levels of cancer-causing potential, and the risk of developing cancer is dependent on several factors, including individual genetic background and the amount and duration of the exposure. This book focuses on various cancer risk factors, covering numerous known, probable, and possible carcinogens; their role in carcinogenesis; mechanisms of carcinogenicity; and methods for detecting carcinogens. And due to the growing concerns over the effects that substances and environmental exposures can have on human health, the chapters also emphasize on the vital need for further topic-related research as well as development and implementation of beneficial approaches.
Incineration has been used widely for waste disposal, including household, hazardous, and medical wasteâ€"but there is increasing public concern over the benefits of combusting the waste versus the health risk from pollutants emitted during combustion. Waste Incineration and Public Health informs the emerging debate with the most up-to-date information available on incineration, pollution, and human healthâ€"along with expert conclusions and recommendations for further research and improvement of such areas as risk communication. The committee provides details on: Processes involved in incineration and how contaminants are released. Environmental dynamics of contaminants and routes of human exposure. Tools and approaches for assessing possible human health effects. Scientific concerns pertinent to future regulatory actions. The book also examines some of the social, psychological, and economic factors that affect the communities where incineration takes place and addresses the problem of uncertainty and variation in predicting the health effects of incineration processes.
Environmental Toxicology is the third volume of a three-volume set on molecular, clinical and environmental toxicology that offers a comprehensive and in-depth response to the increasing importance and abundance of chemicals of daily life. By providing intriguing insights far down to the molecular level, this three-volume work covers the entire range of modern toxicology with special emphasis on recent developments and achievements. It is written for students and professionals in medicine, science, public health or engineering who are demanding reliable information on toxic or potentially harmful agents and their adverse effects on the human body.
Smelting is an industrial process involving the extraction of metal from ore. During this process, impurities in ore—including arsenic, lead, and cadmium—may be released from smoke stacks, contaminating air, water, and soil with toxic-heavy metals. The problem of public health harm from smelter emissions received little official attention for much for the twentieth century. Though people living near smelters periodically complained that their health was impaired by both sulfur dioxide and heavy metals, for much of the century there was strong deference to industry claims that smelter operations were a nuisance and not a serious threat to health. It was only when the majority of children living near the El Paso, Texas, smelter were discovered to be lead-exposed in the early 1970s that systematic, independent investigation of exposure to heavy metals in smelting communities began. Following El Paso, an even more serious led poisoning epidemic was discovered around the Bunker Hill smelter in northern Idaho. In Tacoma, Washington, a copper smelter exposed children to arsenic—a carcinogenic threat. Thoroughly grounded in extensive archival research, Tainted Earth traces the rise of public health concerns about nonferrous smelting in the western United States, focusing on three major facilities: Tacoma, Washington; El Paso, Texas; and Bunker Hill, Idaho. Marianne Sullivan documents the response from community residents, public health scientists, the industry, and the government to pollution from smelters as well as the long road to protecting public health and the environment. Placing the environmental and public health aspects of smelting in historical context, the book connects local incidents to national stories on the regulation of airborne toxic metals. The nonferrous smelting industry has left a toxic legacy in the United States and around the world. Unless these toxic metals are cleaned up, they will persist in the environment and may sicken people—children in particular—for generations to come. The twentieth-century struggle to control smelter pollution shares many similarities with public health battles with such industries as tobacco and asbestos where industry supported science created doubt about harm, and reluctant government regulators did not take decisive action to protect the public’s health.