Turbulence and Mixing in Stratified Shear Flows

Turbulence and Mixing in Stratified Shear Flows

Author:

Publisher:

Published: 1998

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

A research program was carried out to investigate turbulent mixing in stably stratified shear flows with the hope of gaining an improved understanding of stably stratified nocturnal boundary layers. The program was mainly laboratory experimental, supplemented by theoretical and numerical developments. The flow configuration consisted of a three-layer system, with upper turbulent layer driven over the lower stratified, quiescent, layer while an intermediate (inversion) layer sandwiched between these two layers. The studies included the nature of instabilities, intermittent generation of turbulence, sustenance and decay of turbulence under varying background conditions (essentially determined by the Richardson number) and ensuing turbulent mixing in the inversion layer. An unprecedented volume of laboratory data were gathered during the program, which enabled to delve into the mechanics and energetics of mixing in stable boundary layers. The laboratory results were compared with, and was used to gain insights on, field observations. Also, the parameterizations developed were compared with those currently used in numerical models. A meso-scale numerical model also was used to check the efficacy of some of the laboratory-based parameterizations.


Turbulent Mixing in Stably Stratified Flows

Turbulent Mixing in Stably Stratified Flows

Author:

Publisher:

Published: 2008

Total Pages: 101

ISBN-13:

DOWNLOAD EBOOK

High resolution direct numerical simulations are used to investigate the dynamics of turbulence in flows subject to strong stable stratification, which are common in natural settings. Results are presented for two categories of simulations, uniform and non-uniform density stratification. For all simulated flows, the density stratification was held constant in time, and there was no ambient shear. Flows with uniform density stratification are first analyzed to help provide clear insight to physical processes, followed by flows with non-uniform density stratification which better represent the stratification occurring in nature.


Ocean Mixing

Ocean Mixing

Author: Michael Meredith

Publisher: Elsevier

Published: 2021-09-16

Total Pages: 386

ISBN-13: 0128215135

DOWNLOAD EBOOK

Ocean Mixing: Drivers, Mechanisms and Impacts presents a broad panorama of one of the most rapidly-developing areas of marine science. It highlights the state-of-the-art concerning knowledge of the causes of ocean mixing, and a perspective on the implications for ocean circulation, climate, biogeochemistry and the marine ecosystem. This edited volume places a particular emphasis on elucidating the key future questions relating to ocean mixing, and emerging ideas and activities to address them, including innovative technology developments and advances in methodology. Ocean Mixing is a key reference for those entering the field, and for those seeking a comprehensive overview of how the key current issues are being addressed and what the priorities for future research are. Each chapter is written by established leaders in ocean mixing research; the volume is thus suitable for those seeking specific detailed information on sub-topics, as well as those seeking a broad synopsis of current understanding. It provides useful ammunition for those pursuing funding for specific future research campaigns, by being an authoritative source concerning key scientific goals in the short, medium and long term. Additionally, the chapters contain bespoke and informative graphics that can be used in teaching and science communication to convey the complex concepts and phenomena in easily accessible ways. Presents a coherent overview of the state-of-the-art research concerning ocean mixing Provides an in-depth discussion of how ocean mixing impacts all scales of the planetary system Includes elucidation of the grand challenges in ocean mixing, and how they might be addressed