Heat Deposition in Positron Sources for ILC.

Heat Deposition in Positron Sources for ILC.

Author: J. Sheppard

Publisher:

Published: 2006

Total Pages: 3

ISBN-13:

DOWNLOAD EBOOK

In the International Linear Collider (ILC) positron source, multi-GeV electrons or multi-MeV photons impinge on a metal target to produce the needed positrons in the resulting electromagnetic showers. The incoming beam power is hundreds of kilowatts. Various computer programs -- such as FLUKA or MARS -- can calculate how the incoming beam showers in the target and can track the particle showers through the positron source system. Most of the incoming energy ends up as heat in the various positron source elements. This paper presents results from such calculations and their impact on the design of a positron source for the ILC.


Studies of Room Temperature Accelerator Structures for the ILC Positron Source

Studies of Room Temperature Accelerator Structures for the ILC Positron Source

Author: R. M. Jones

Publisher:

Published: 2006

Total Pages: 3

ISBN-13:

DOWNLOAD EBOOK

There are many challenges in the design of the normal-conducting portion of the ILC positron injector system such as achieving adequate cooling with the high RF and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. The proposed design for the positron injector contains both standing-wave and traveling-wave L-band accelerator structures for high RF efficiency, low cost and ease of fabrication. This paper presents results from several studies including particle energy deposition for both undulator based and conventional positron sources, cooling system design, accelerator structure optimization, RF pulse heating, cavity frequency stabilization, and RF feed system design.


Intense Source of Positrons Using Channeling Effect in Crystals

Intense Source of Positrons Using Channeling Effect in Crystals

Author: Chenghai Xu

Publisher:

Published: 2012

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

The research work carried out for this PhD is concerning a special kind of positron source using channeling radiation and other crystal effects in an axially oriented crystal to generate a high number of photons which create, subsequently, a large number of pairs in an amorphous target. Photon generation and pair creation are developing in two targets separated by some distance allowing a sweeping magnet to get off the charged particles away from the amorphous converter. Such a scheme is called an hybrid positron source and has been adopted for the CLIC baseline. This kind of sources present big advantages with respect to the conventional sources where large emittance and important heat deposition are met. After some recall on the physical phenomena of interest for our study, detailed simulations are worked out using a special program dealing with crystal effects from Prof. Strakhovenko and the GEANT4 code; these tools led to a complete description of the positron source concerning the photons from one side and the positrons, from the other side, for which the main characteristics have been determined: transverse and longitudinal phase space, energy spectrum, time distribution,...Emphasis has been put on two points: first the matching devices capturing the positrons after the target which are essential for good accepted yields and the energy deposition density which is an important question for the reliability of the targets. Concerning the former point, three matching devices have been studied and their features compared: the Adiabatic Matching Device (AMD) largely used or considered for the positron sources, the Quarter Wave Transformer (QWT) and also the Lithium lens. For the latter point, related to the energy deposition and heating of the targets, we have tried to optimize the energy deposition density lowering its maximum value (PEDD); the average heat deposition has also been optimized using special converter material in granular shape, as considered for the neutrino factories. Very promising results allowed us to consider the hybrid positron source as an alternative to the difficult case of ILC; a special scheme for the transformation of the ILC beam pulses has been used, after KEK proposition. The positron beam transport has also been studied in the first part of the positron pre-accelerator including the solenoid and the first part of the quadrupole channel.


Polarized Positron 2011

Polarized Positron 2011

Author: Wei Gai

Publisher: World Scientific

Published: 2012-10-05

Total Pages: 167

ISBN-13: 981440103X

DOWNLOAD EBOOK

This volume is a collection of the contributions to the 6th Annual Workshop on Polarized Positron in China. It provides an important updated to couple Linear Collider (ILC+CLIC) aimed polarized positron source R&D efforts to more general polarized positron related community with the aim of advancing polarized positron studies through exchanges and collaborations. The topics covered include: positron beams for linear colliders, but not limited to it, with the main items listed below: Polarized gamma ray generation High degree Polarized positron generation from compton scattering both ring and linac based High degree polarized positron generation from undulator radiation Stacking and accumulation of the polarized beam from compton regime Polarized beam transport, control and acceleration Channelling radiation and applications Physics applications of polarized positrons Various high intensity positron sources (include conventional) For other future colliders (SuperB for example) Positron generation target issues Physics applications of high quality X-rays and gamma rays Polarimetry at the e+ source The positron capture section and the photon collimation Review the activities of the "ILC CLIC e+ generation" working group for all schemes Status of the CDR for CLIC and TDR for ILC Polarized electron sources


Polarized Positron 2011 - Proceedings Of The 6th Annual Workshop

Polarized Positron 2011 - Proceedings Of The 6th Annual Workshop

Author: Wei Gai

Publisher: World Scientific

Published: 2012-10-05

Total Pages: 167

ISBN-13: 9814401056

DOWNLOAD EBOOK

This volume is a collection of the contributions to the 6th Annual Workshop on Polarized Positron held in China. It provides updated information on polarized positron source R&D efforts for future high energy linear colliders and other research activities related to the polarized positron studies.The topics covered include: positron beams for linear colliders, but not limited to it, with the main items listed below:


Particle Physics Reference Library

Particle Physics Reference Library

Author: Christian W. Fabjan

Publisher: Springer Nature

Published: 2020

Total Pages: 1083

ISBN-13: 3030353184

DOWNLOAD EBOOK

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access


Handbook Of Accelerator Physics And Engineering (2nd Edition)

Handbook Of Accelerator Physics And Engineering (2nd Edition)

Author: Alexander Wu Chao

Publisher: World Scientific

Published: 2013-03-25

Total Pages: 849

ISBN-13: 9814415863

DOWNLOAD EBOOK

Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practitioners of the art and science of accelerators.The eight chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities associated with the various interactions mentioned. A chapter on operational considerations includes discussions on the assessment and correction of orbit and optics errors, real-time feedbacks, generation of short photon pulses, bunch compression, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement and acceleration (both normal conducting and superconducting) receive detailed treatment in a subsystems chapter, beam measurement techniques and apparatus being treated therein as well. The closing chapter gives data and methods for radiation protection computations as well as much data on radiation damage to various materials and devices.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.


Handbook Of Accelerator Physics And Engineering (Third Edition)

Handbook Of Accelerator Physics And Engineering (Third Edition)

Author: Alexander Wu Chao

Publisher: World Scientific

Published: 2023-02-02

Total Pages: 960

ISBN-13: 981126919X

DOWNLOAD EBOOK

Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing many new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to common formulae of previous compilations, hard to find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practioners of the art and science of accelerators.The seven chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities due to the various interactions mentioned. A chapter on operational considerations including discussions on the assessment and correction of orbit and optics errors, realtime feedbacks, generation of short photon pulses, bunch compression, phase-space exchange, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cryogenic vacuum systems, steady state microbuching, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes, machine learning, multiple frequency rf systems, FEL seeding, ultrafast electron diffraction, and Gamma Factory. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement, including undulators, and acceleration (both normal and superconducting) receive detailed treatment in a sub-systems chapter, beam measurement and apparatus being treated therein as well.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.


Reviews Of Accelerator Science And Technology - Volume 10: The Future Of Accelerators

Reviews Of Accelerator Science And Technology - Volume 10: The Future Of Accelerators

Author: Chao Alexander Wu

Publisher: World Scientific

Published: 2019-09-09

Total Pages: 352

ISBN-13: 9811209618

DOWNLOAD EBOOK

Volume 10 in the series of the annual journal Reviews of Accelerator Science and Technology (RAST), will be its final volume. Its theme is 'The Future of Accelerators'. This volume, together with previous 9 volumes, gives readers a complete picture as well as detailed technical information about the accelerator field, and its many driving and fascinating aspects.This volume has 17 articles. The first 15 articles have a different approach from the previous volumes. They emphasize the more personal views, perspectives and advice from the frontier researchers rather than provide a review or survey of a specific subfield. This emphasis is more aligned with the theme of the current volume. The other two articles are dedicated respectively to Leon Lederman and Burton Richter, two prominent leaders of our community who left us last year.


Particle Detectors

Particle Detectors

Author: Hermann Kolanoski

Publisher: Oxford University Press

Published: 2020-06-30

Total Pages: 949

ISBN-13: 0191899232

DOWNLOAD EBOOK

This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.