Long before the NASA was the throes of planning for the Apollo voyages to the Moon, many people had seen the need for a vehicle that could access space routinely. The idea of a reusable space shuttle dates at least to the theoretical rocketplane studies of the 1930s, but by the 1950s it had become an integral part of a master plan for space exploration. The goal of efficient access to space in a heavy-lift booster prompted NASA's commitment to the space shuttle as the vehicle to continue human space flight. By the mid-1960s, NASA engineers concluded that the necessary technology was within reach to enable the creation of a reusable winged space vehicle that could haul scientific and applications satellites of all types into orbit for all users. President Richard M. Nixon approved the effort to build the shuttle in 1972 and the first orbital flight took place in 1981. Although the development program was risky, a talented group of scientists and engineers worked to create this unique space vehicle and their efforts were largely successful. Since 1981, the various orbiters -Atlantis, Columbia, Discovery, Endeavour, and Challenger (lost in 1986 during the only Space Shuttle accident)- have made early 100 flights into space. Through 1998, the space shuttle has carried more than 800 major scientific and technological payloads into orbit and its astronaut crews have conducted more than 50 extravehicular activities, including repairing satellites and the initial building of the International Space Station. The shuttle remains the only vehicle in the world with the dual ability to deliver and return large payloads to and from orbit, and is also the world's most reliable launch system. The design, now almost three decades old, is still state-of-the-art in many areas, including computerized flight control, airframe design, electrical power systems, thermal protection system, and main engines. This significant new study of the decision to build the space shuttle explains the shuttle's origin and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government.
Commercial Orbital Transportation Services: A New Era in Spaceflight provides a history of the NASA Commercial Orbital Transportation Services (COTS) program executed by the Commercial Crew & Cargo Program Office from 2006 to 2013 at the Johnson Space Center, Houston, Texas. It discusses the elements and people that ultimately made the COTS model a success.
This bestselling reference guide contains the most reliable and comprehensive material on launch programs in Brazil, China, Europe, India, Israel, and the United States. Packed with illustrations and figures, this edition has been updated and expanded, and offers a quick and easy data retrieval source for policy makers, planners, engineers, launch buyers, and students.