This book shares the technical knowhow in the field of health, safety and environmental management, as applied to oil and gas industries and explains concepts through a simple and straightforward approach Provides an overview of health, safety and environmental (HSE) management as applied to offshore and petroleum engineering Covers the fundamentals of HSE and demonstrates its practical application Includes industry case studies and examples based on the author's experiences in both academia and oil and gas industries Presents recent research results Includes tutorials and exercises
Successfully estimate risk and reliability, and produce innovative, yet reliable designs using the approaches outlined in Offshore Structural Engineering: Reliability and Risk Assessment. A hands-on guide for practicing professionals, this book covers the reliability of offshore structures with an emphasis on the safety and reliability of offshore facilities during analysis, design, inspection, and planning. Since risk assessment and reliability estimates are often based on probability, the author utilizes concepts of probability and statistical analysis to address the risks and uncertainties involved in design. He explains the concepts with clear illustrations and tutorials, provides a chapter on probability theory, and covers various stages of the process that include data collection, analysis, design and construction, and commissioning. In addition, the author discusses advances in geometric structural forms for deep-water oil exploration, the rational treatment of uncertainties in structural engineering, and the safety and serviceability of civil engineering and other offshore structures. An invaluable guide to innovative and reliable structural design, this book: Defines the structural reliability theory Explains the reliability analysis of structures Examines the reliability of offshore structures Describes the probabilistic distribution for important loading variables Includes methods of reliability analysis Addresses risk assessment and more Offshore Structural Engineering: Reliability and Risk Assessment provides an in-depth analysis of risk analysis and assessment and highlights important aspects of offshore structural reliability. The book serves as a practical reference to engineers and students involved in naval architecture, ocean engineering, civil/structural, and petroleum engineering.
Methods in Chemical Process Safety, Volume Two, the latest release in a serial that publishes fully commissioned methods papers across the field of process safety, risk assessment, and management and loss prevention, aims to provide informative, visual and current content that appeals to both researchers and practitioners in process safety. This new release contains unique chapters on offshore safety, offshore platform safety, human factors in offshore operation, marine safety, safety during well drilling and operation, safety during processing (top side), safety during transportation of natural resources (offshore pipeline), and regulatory context - Helps acquaint the reader/researcher with the fundamentals of process safety - Provides the most recent advancements and contributions on the topic from a practical point-of-view - Presents users with the views/opinions of experts in each topic - Includes a selection of the author(s) of each chapter from among the leading researchers and/or practitioners for each given topic
Fundamentals of Offshore Engineering addresses the basics of design for offshore oil and gas production systems and examines the health, safety, and environmental (HSE) aspects in the oil and gas industry with emphasis toward safety measures in design and operations. It also covers fundamental issues of crude oil and natural gas exploration and extraction and also includes coverage of seismic surveys and green energy systems. Details of offshore platforms, describing the types, historical development, basics of analysis and design, environmental loads, and potential hazards are also provided. The book serves as a useful resource for universities that teach offshore engineering to senior undergraduate and graduate students as well as a guide for practicing engineers. Includes coverage of wave loads, wind loads, ice loads, and fire loads on structures. Discusses offshore pipelines and subsea engineering to help readers understand the fundamentals of petroleum production and related pipeline installation.
Offshore platforms face many risks, including a hostile ocean environment, extreme temperatures, overpressure loads, fire risks, and hydrocarbon explosions, all of which pose unique challenges in designing their topside platforms. The topside design also involves the selection of appropriate materials to reduce fire risk without compromising the functional requirements. These platforms serve valuable, utility, production, and processing purposes, and can also provide living quarters for personnel. Concepts such as basic design, special design, materials selection, and risk hazards are explained in the authors' straightforward classroom style, and are based on their rich experience in both academia and industry. Features • Includes practical examples which are solved using international codes to offer a better understanding of the subjects presented • Addresses safety and risk of offshore platforms, and considers numerous topside accident scenarios • Discusses the structural and mechanical properties of various materials, such as steel and newer functionally graded materials (FGMs) Design Aids for Offshore Topside Platforms Under Special Loads serves as a design manual for multi-disciplinary engineering graduates and practicing professionals working in civil, mechanical, offshore, naval, and petroleum engineering fields. In addition, the book will serve as reference manual for practicing design engineers and risk assessors.
Author: United States. Committee on the Effectiveness of Safety and Environmental Management Systems for Outer Continental Shelf Oil and Gas Operations
Publisher: Transportation Research Board National Research
This report recommends that the Bureau of Safety and Environmental Enforcement (BSEE) take a holistic approach to evaluating the effectiveness offshore oil and the Safety and Environmental Management Systems (SEMS) programs of gas industry operators. According to the report, this approach should, at a minimum, include inspections, audits by the operator and BSEE, key performance indicators, and a whistleblower program. SEMS is a safety management system (SMS) aimed at shifting from a completely prescriptive regulatory approach to one that is proactive, risk based, and goal oriented in an attempt to improve safety and reduce the likelihood that events similar to the April 2010 Macondo incident will reoccur. According to the committee that produced the report, it is not possible for a regulator to create a culture of safety in an organization by inspection or audit; that culture needs to come from within the organization. To be successful, the tenets of SEMS must be fully acknowledged and accepted by workers, motivated from the top, and supported throughout the organization and must drive worker actions. The report also notes that BSEE can encourage and aid industry in development of a culture of safety by the way it measures and enforces SEMS. The committee believes BSEE should seize this opportunity to make a step change in safety culture by adopting a goal based holistic approach to evaluating the effectiveness of SEMS programs. In recommending a holistic approach to evaluating the effectiveness of SEMS programs, the report explores in detail the role of SEMS in helping to develop a culture of safety, highlights the pros and cons of various methods of assessing the effectiveness of a SEMS program, and investigates existing approaches for assessing the SMS programs of various U.S. and international regulatory agencies whose safety mandates are similar to that of BSEE.
The book makes the case for process safety and provides a brief overviews of the upstream industry and of CCPS Risk Based Process Safety. The majority of the book focuses on the concepts of implementing process safety in wells, onshore, offshore, and projects. Topics include Overview of Upstream Operations; Overview of Risk Based Process Safety (RBPS); Application of RBPS in Drilling, Completions, Work-Overs & Interventions, Application of RBPS in Onshore Production, Application of RBPS in Offshore Production, Application of RBPS to Engineering Design, Installation, and Construction, Future Developments in the Field
Since the 2010 Deepwater Horizon blowout and oil spill, efforts to improve safety in the offshore oil industry have resulted in the adoption of new technological controls, increased promotion of safety culture, and the adoption of new data collection systems to improve both safety and performance. As an essential element of a positive safety culture, operators and regulators are increasingly integrating strategies that empower workers to participate in process safety decisions that reduce hazards and improve safety. While the human factors of personal safety have been widely studied and widely adopted in many high-risk industries, process safety â€" the application of engineering, design, and operative practices to address major hazard concerns â€" is less well understood from a human factors perspective, particularly in the offshore oil industry. The National Academies of Sciences, Engineering, and Medicine organized a workshop in January 2018 to explore best practices and lessons learned from other high-risk, high-reliability industries for the benefit of the research community and of citizens, industry practitioners, decision makers, and officials addressing safety in the offshore oil industry. This publication summarizes the presentations and discussions from the workshop.
The UN Sustainable Development Goals are an ambitious agenda for environmental sustainability, economic development, and social transformation. The SDGs include targets for governments, in partnership with private industry and communities, to improve access to affordable and reliable energy, reduce inequality, protect natural resources, and invest in transparent legal institutions and resilient infrastructure. Although transitioning energy systems towards a low-carbon future is a core aspect of the SDGs, the International Energy Agency anticipates that oil and gas will remain a significant component of the global energy mix for some time. Host Government Instruments are tools which governments use to grant oil and gas companies permission to develop state-owned resources. In addition to bringing substantial resources into governments, these HGIs often also include environmental commitments as well as commitments to local hiring, stakeholder engagement, and investment in economic development programmes. The different structures of HGIs and their precise terms and conditions are crucial determinants of the sustainability of oil and gas operations conducted thereunder. This book addresses how governments can use HGIs to advance the SDGs. Part I introduces the SDGs and the legal institutions and governance related to HGIs, including in relation to international energy development, international environmental treaties, the Paris Agreement, and human rights regimes. Part II examines specific provisions within HGIs and regulatory systems which relate to the oil and gas sector and SDGs. It provides case studies to illustrate approaches to HGIs and to identify opportunities for host governments and international oil and gas companies to advance the SDGs. The book concludes with a summary of recommendations regarding how host governments, in partnership with the oil and gas industry, can use HGIs to advance economic development and sustainability goals, and advances potential insights towards development of new and renewable resources.
The blowout of the Macondo well on April 20, 2010, led to enormous consequences for the individuals involved in the drilling operations, and for their families. Eleven workers on the Deepwater Horizon drilling rig lost their lives and 16 others were seriously injured. There were also enormous consequences for the companies involved in the drilling operations, to the Gulf of Mexico environment, and to the economy of the region and beyond. The flow continued for nearly 3 months before the well could be completely killed, during which time, nearly 5 million barrels of oil spilled into the gulf. Macondo Well-Deepwater Horizon Blowout examines the causes of the blowout and provides a series of recommendations, for both the oil and gas industry and government regulators, intended to reduce the likelihood and impact of any future losses of well control during offshore drilling. According to this report, companies involved in offshore drilling should take a "system safety" approach to anticipating and managing possible dangers at every level of operation-from ensuring the integrity of wells to designing blowout preventers that function under all foreseeable conditions-in order to reduce the risk of another accident as catastrophic as the Deepwater Horizon explosion and oil spill. In addition, an enhanced regulatory approach should combine strong industry safety goals with mandatory oversight at critical points during drilling operations. Macondo Well-Deepwater Horizon Blowout discusses ultimate responsibility and accountability for well integrity and safety of offshore equipment, formal system safety education and training of personnel engaged in offshore drilling, and guidelines that should be established so that well designs incorporate protection against the various credible risks associated with the drilling and abandonment process. This book will be of interest to professionals in the oil and gas industry, government decision makers, environmental advocacy groups, and others who seek an understanding of the processes involved in order to ensure safety in undertakings of this nature.