Hazardous Waste Site Remediation is an outstanding textbook that reviews specific treatment processes, as well as pertinent basic concepts in organic geochemistry, material balance mass transfer, thermodynamics, and kinetics. Following a quantitative approach to source control, the text covers regulations, materials handling, engineering principles, soil vapor extraction, chemical extraction and soil washing, solidification and stabilization, and chemical destruction. It also explores topics in bioremediation, thermal processes, risk assessment, and waste minimization. A solutions manual is available.
Every practicing environmental engineer should already have a firm grasp on the basics of hazardous waste site remediation-the key to confronting a site problem, and devising an effective solution. Since their original introduction to remediation, technology has kept moving ahead with new ideas and procedures. Fundamentals of Hazardous Waste Site Remediation gives environmental professionals immediate access to the basics of the trade, along with information about recent advancements. This comprehensive overview examines the basics of such areas as hazardous materials chemistry, hydrogeology, reaction engineering, and clean-up level development. A chapter on Cost Estimating will be of particular interest to specialists, in light of recent concerns about the increased costs of remediation. After reading each chapter, test your new knowledge with the review problems. As a refresher guide for career environmental engineers, or a helpful tool to newcomers in the field, Fundamentals of Hazardous Waste Site Remediation is a valuable resource for longtime professionals and newcomers alike.
This introductory manual addresses environmental site restoration practices that both ensure compliance with federal statutes and prevent further contamination or expense. Emphasizing environmental chemistry, soil science, microbiology, plant science, and the underlying chemical processes, Fundamentals of Site Remediation incorporates relevant chemical principles into the cleanup and removal of hazardous chemicals from soil, geological strata, and groundwater.
Hazardous waste management is a complex, interdisciplinary field that continues to grow and change as global conditions change. Mastering this evolving and multifaceted field of study requires knowledge of the sources and generation of hazardous wastes, the scientific and engineering principles necessary to eliminate the threats they pose to people and the environment, the laws regulating their disposal, and the best or most cost-effective methods for dealing with them. Written for students with some background in engineering, this comprehensive, highly acclaimed text does not only provide detailed instructions on how to solve hazardous waste problems but also guides students to think about ways to approach these problems. Each richly detailed, self-contained chapter ends with a set of discussion topics and problems. Case studies, with equations and design examples, are provided throughout the book to give students the chance to evaluate the effectiveness of different treatment and containment technologies.
This book covers a broad group of wastes, from biowaste to hazardous waste, but primarily the largest (by mass and volume) group of wastes that are not hazardous, but also are not inert, and are problematic for three major reasons: (1) they are difficult to manage because of their volume: usually they are used in civil engineering as a common fill etc., where they are exposed to environmental conditions almost the same way as at disposal sites; (2) they are not geochemically stable and in the different periods of environmental exposure undergo transformations that might add hazardous properties to the material that are not displayed when it is freshly generated; (3) many designers and researchers in different countries involved in waste management are often not aware of time-delayed adverse environmental impact of some large-volume waste, and also do not consider some positive properties that may extend the area of their environmentally beneficial application.
This third edition updates and expands the material presented in the best-selling first and second editions of Basic Hazardous Waste Management. It covers health and safety issues affecting hazardous waste workers, management and regulation of radioactive and biomedical/infectious wastes, as well as current trends in technologies. While the topics
Geoenvironmental Engineering covers the application of basic geological and hydrological science, including soil and rock mechanics and groundwater hydrology, to any number of different environmental problems. * Includes end-of-chapter summaries, design examples and worked-out numerical problems, and problem questions. * Offers thorough coverage of the role of geotechnical engineering in a wide variety of environmental issues. * Addresses such issues as remediation of in-situ hazardous waste, the monitoring and control of groundwater pollution, and the creation and management of landfills and other above-ground and in-situ waste containment systems.
Environmental remediation technologies to control or prevent pollution from hazardous waste material is a growing research area in academia and industry, and is a matter of utmost concern to public health, to improve ecology and to facilitate the redevelopment of a contaminated site. Recently, in situ and ex situ remediation technologies have been developed to rectify the contaminated sites, utilizing various tools and devices through physical, chemical, biological, electrical, and thermal processes to restrain, remove, extract, and immobilize mechanisms to minimize the contamination effects. This handbook brings altogether classical and emerging techniques for hazardous wastes, municipal solid wastes and contaminated water sites, combining chemical, biological and engineering control methods to provide a one-stop reference. This handbook presents a comprehensive and thorough description of several remediation techniques for contaminated sites resulting from both natural processes and anthropogenic activities. Providing critical insights into a range of treatments from chemical oxidation, thermal treatment, air sparging, electrokinetic remediation, stabilization/solidification, permeable reactive barriers, thermal desorption and incineration, phytoremediation, biostimulation and bioaugmentation, bioventing and biosparging through ultrasound-assisted remediation methods, electrochemical remediation methods, and nanoremediation, this handbook provides the reader an inclusive and detailed overview and then discusses future research directions. Closing chapters on green sustainable remediation, economics, health and safety issues, and environmental regulations around site remediation will make this a must-have handbook for those working in the field.
Decommissioning nuclear facilities is a relatively new field, which has developed rapidly in the last ten years. It involves materials that may be highly radioactive and therefore require sophisticated methods of containment and remote handling. The wastes arising from decommissioning are hazardous and have to be stored or disposed of safely in order to protect the environment and future generations. Nuclear decommissioning work must be carried out to the highest possible standards to protect workers, the general public and the environment. This book describes the techniques used for dismantling redundant nuclear facilities, the safe storage of radioactive wastes and the restoration of nuclear licensed sites.* Describes the techniques used for dismantling nuclear facilities, safe storage of radioactive wastes, and the restoration of nuclear licensed facilities. * Provides the reader with decommissioning experience accumulated over 15 years by UKAEA. * Contains valuable information to personnel new to decommissioning and waste management.