New Horizons for a Data-Driven Economy

New Horizons for a Data-Driven Economy

Author: José María Cavanillas

Publisher: Springer

Published: 2016-04-04

Total Pages: 312

ISBN-13: 3319215698

DOWNLOAD EBOOK

In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.


The Future of Competitive Strategy

The Future of Competitive Strategy

Author: Mohan Subramaniam

Publisher: MIT Press

Published: 2022-08-16

Total Pages: 314

ISBN-13: 0262046997

DOWNLOAD EBOOK

How legacy firms can combine their traditional strengths with the power of data and digital ecosystems to forge a new competitive strategy for the digital era. How can legacy firms remain relevant in the digital era? In The Future of Competitive Strategy, strategic management expert Mohan Subramaniam explains how firms can leverage both their traditional strengths and the modern-day power of data and digital ecosystems to forge a new competitive strategy. Drawing on the experiences of a range of companies, including Caterpillar, Sleep Number, and Whirlpool, he explains how firms can benefit from data’s enlarged role in modern business, develop digital ecosystems tailored to their unique business needs, and use new frameworks to harness the power of data for competitive advantage. Subramaniam presents digital ecosystems as a combination of production and consumption ecosystems, which can be used by legacy firms to unlock the value of data at various levels—from improving operational efficiencies to creating new data-driven services and transforming traditional products into digital platforms. He explores the ways sensors and the Internet of Things provide new kinds of customer data; presents the concept of digital competitors—other firms that have access to similar data; discusses the new digital capabilities that firms need to develop; and addresses privacy and security issues associated with data sharing. Who needs this book? Any firm that wants to revitalize traditional business models, offer a richer customer experience, and expand its competitive arena into new digital ecosystems.


Research Anthology on Big Data Analytics, Architectures, and Applications

Research Anthology on Big Data Analytics, Architectures, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2021-09-24

Total Pages: 1988

ISBN-13: 1668436639

DOWNLOAD EBOOK

Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.


Harness the Power of Big Data The IBM Big Data Platform

Harness the Power of Big Data The IBM Big Data Platform

Author: Paul Zikopoulos

Publisher: McGraw Hill Professional

Published: 2012-11-08

Total Pages: 281

ISBN-13: 0071808183

DOWNLOAD EBOOK

Boost your Big Data IQ! Gain insight into how to govern and consume IBM’s unique in-motion and at-rest Big Data analytic capabilities Big Data represents a new era of computing—an inflection point of opportunity where data in any format may be explored and utilized for breakthrough insights—whether that data is in-place, in-motion, or at-rest. IBM is uniquely positioned to help clients navigate this transformation. This book reveals how IBM is infusing open source Big Data technologies with IBM innovation that manifest in a platform capable of "changing the game." The four defining characteristics of Big Data—volume, variety, velocity, and veracity—are discussed. You’ll understand how IBM is fully committed to Hadoop and integrating it into the enterprise. Hear about how organizations are taking inventories of their existing Big Data assets, with search capabilities that help organizations discover what they could already know, and extend their reach into new data territories for unprecedented model accuracy and discovery. In this book you will also learn not just about the technologies that make up the IBM Big Data platform, but when to leverage its purpose-built engines for analytics on data in-motion and data at-rest. And you’ll gain an understanding of how and when to govern Big Data, and how IBM’s industry-leading InfoSphere integration and governance portfolio helps you understand, govern, and effectively utilize Big Data. Industry use cases are also included in this practical guide.


Intellectual Property Ordering Beyond Borders

Intellectual Property Ordering Beyond Borders

Author: Henning Grosse Ruse-Khan

Publisher: Cambridge University Press

Published: 2022-10-13

Total Pages: 473

ISBN-13: 1316512932

DOWNLOAD EBOOK

This volume brings together various perspectives to re-conceptualise IP protection beyond borders within a broader public international law framework.


Big Data Analytics in HIV/AIDS Research

Big Data Analytics in HIV/AIDS Research

Author: Al Mazari, Ali

Publisher: IGI Global

Published: 2018-04-27

Total Pages: 323

ISBN-13: 1522532048

DOWNLOAD EBOOK

With the advent of new technologies in big data science, the study of medical problems has made significant progress. Connecting medical studies and computational methods is crucial for the advancement of the medical industry. Big Data Analytics in HIV/AIDS Research provides emerging research on the development and implementation of computational techniques in big data analysis for biological and medical practices. While highlighting topics such as deep learning, management software, and molecular modeling, this publication explores the various applications of data analysis in clinical decision making. This book is a vital resource for medical practitioners, nurses, scientists, researchers, and students seeking current research on the connections between data analytics in the field of medicine.


Big Data

Big Data

Author: Bill Schmarzo

Publisher: John Wiley & Sons

Published: 2013-09-23

Total Pages: 245

ISBN-13: 1118740009

DOWNLOAD EBOOK

Leverage big data to add value to your business Social media analytics, web-tracking, and other technologies help companies acquire and handle massive amounts of data to better understand their customers, products, competition, and markets. Armed with the insights from big data, companies can improve customer experience and products, add value, and increase return on investment. The tricky part for busy IT professionals and executives is how to get this done, and that's where this practical book comes in. Big Data: Understanding How Data Powers Big Business is a complete how-to guide to leveraging big data to drive business value. Full of practical techniques, real-world examples, and hands-on exercises, this book explores the technologies involved, as well as how to find areas of the organization that can take full advantage of big data. Shows how to decompose current business strategies in order to link big data initiatives to the organization’s value creation processes Explores different value creation processes and models Explains issues surrounding operationalizing big data, including organizational structures, education challenges, and new big data-related roles Provides methodology worksheets and exercises so readers can apply techniques Includes real-world examples from a variety of organizations leveraging big data Big Data: Understanding How Data Powers Big Business is written by one of Big Data's preeminent experts, William Schmarzo. Don't miss his invaluable insights and advice.


Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Author: El Bachir Boukherouaa

Publisher: International Monetary Fund

Published: 2021-10-22

Total Pages: 35

ISBN-13: 1589063953

DOWNLOAD EBOOK

This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.


Big Data

Big Data

Author: Cornelia Hammer

Publisher: International Monetary Fund

Published: 2017-09-13

Total Pages: 41

ISBN-13: 1484318978

DOWNLOAD EBOOK

Big data are part of a paradigm shift that is significantly transforming statistical agencies, processes, and data analysis. While administrative and satellite data are already well established, the statistical community is now experimenting with structured and unstructured human-sourced, process-mediated, and machine-generated big data. The proposed SDN sets out a typology of big data for statistics and highlights that opportunities to exploit big data for official statistics will vary across countries and statistical domains. To illustrate the former, examples from a diverse set of countries are presented. To provide a balanced assessment on big data, the proposed SDN also discusses the key challenges that come with proprietary data from the private sector with regard to accessibility, representativeness, and sustainability. It concludes by discussing the implications for the statistical community going forward.