Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis

Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis

Author: Hugh L. Montgomery

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 242

ISBN-13: 0821807374

DOWNLOAD EBOOK

This volume contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One particularly valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. The book should be a useful resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in number theory.


Discrete Harmonic Analysis

Discrete Harmonic Analysis

Author: Tullio Ceccherini-Silberstein

Publisher: Cambridge University Press

Published: 2018-06-21

Total Pages: 589

ISBN-13: 1107182336

DOWNLOAD EBOOK

A self-contained introduction to discrete harmonic analysis with an emphasis on the Discrete and Fast Fourier Transforms.


Fourier Analysis on Number Fields

Fourier Analysis on Number Fields

Author: Dinakar Ramakrishnan

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 372

ISBN-13: 1475730853

DOWNLOAD EBOOK

A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.


Groups Acting on Hyperbolic Space

Groups Acting on Hyperbolic Space

Author: Juergen Elstrodt

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 530

ISBN-13: 3662036266

DOWNLOAD EBOOK

This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n :::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauß had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,


Harmonic Analysis and Number Theory

Harmonic Analysis and Number Theory

Author: Carl Herz

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 248

ISBN-13: 9780821807941

DOWNLOAD EBOOK

This volume presents the proceedings of a conference on Harmonic Analysis and Number Theory held at McGill University (Montreal) in April 1996. The papers are dedicated to the memory of Carl Herz, who had deep interests in both harmonic analysis and number theory. These two disciplines have a symbiotic relationship that is reflected in the papers in this book.


Number Theory, Fourier Analysis and Geometric Discrepancy

Number Theory, Fourier Analysis and Geometric Discrepancy

Author: Giancarlo Travaglini

Publisher: Cambridge University Press

Published: 2014-06-12

Total Pages: 251

ISBN-13: 1139992821

DOWNLOAD EBOOK

The study of geometric discrepancy, which provides a framework for quantifying the quality of a distribution of a finite set of points, has experienced significant growth in recent decades. This book provides a self-contained course in number theory, Fourier analysis and geometric discrepancy theory, and the relations between them, at the advanced undergraduate or beginning graduate level. It starts as a traditional course in elementary number theory, and introduces the reader to subsequent material on uniform distribution of infinite sequences, and discrepancy of finite sequences. Both modern and classical aspects of the theory are discussed, such as Weyl's criterion, Benford's law, the Koksma–Hlawka inequality, lattice point problems, and irregularities of distribution for convex bodies. Fourier analysis also features prominently, for which the theory is developed in parallel, including topics such as convergence of Fourier series, one-sided trigonometric approximation, the Poisson summation formula, exponential sums, decay of Fourier transforms, and Bessel functions.


Harmonic Analysis and the Theory of Probability

Harmonic Analysis and the Theory of Probability

Author: Saloman Bochner

Publisher: Univ of California Press

Published: 2023-11-15

Total Pages: 184

ISBN-13: 0520345290

DOWNLOAD EBOOK

This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1955.


Harmonic Analysis on the Heisenberg Group

Harmonic Analysis on the Heisenberg Group

Author: Sundaram Thangavelu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 204

ISBN-13: 1461217725

DOWNLOAD EBOOK

The Heisenberg group plays an important role in several branches of mathematics, such as representation theory, partial differential equations, number theory, several complex variables and quantum mechanics. This monograph deals with various aspects of harmonic analysis on the Heisenberg group, which is the most commutative among the non-commutative Lie groups, and hence gives the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis. The aim of this text is to demonstrate how the standard results of abelian harmonic analysis take shape in the non-abelian setup of the Heisenberg group. Thangavelu’s exposition is clear and well developed, and leads to several problems worthy of further consideration. Any reader who is interested in pursuing research on the Heisenberg group will find this unique and self-contained text invaluable.


Analysis IV

Analysis IV

Author: Roger Godement

Publisher: Springer

Published: 2015-04-30

Total Pages: 535

ISBN-13: 3319169076

DOWNLOAD EBOOK

Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be `modern' and `classical', is universally useful whereas the second part leads the reader towards a very active and specialized field of research, with possibly broad generalizations.


Complex Analysis

Complex Analysis

Author: Elias M. Stein

Publisher: Princeton University Press

Published: 2010-04-22

Total Pages: 398

ISBN-13: 1400831156

DOWNLOAD EBOOK

With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.