Hansen solubility parameters (HSPs) are used to predict molecular affinities, solubility, and solubility-related phenomena. Revised and updated throughout, Hansen Solubility Parameters: A User's Handbook, Second Edition features the three Hansen solubility parameters for over 1200 chemicals and correlations for over 400 materials including p
The CRC Handbook of Solubility Parameters and Other Cohesion Parameters, Second Edition, which includes 17 new sections and 40 new data tables, incorporates information from a vast amount of material published over the last ten years. The volume is based on a bibliography of 2,900 reports, including 1,200 new citations. The detailed, careful construction of the handbook develops the concept of solubility parameters from empirical, thermodynamic, and molecular points of view and demonstrates their application to liquid, gas, solid, and polymer systems.
Extraction processes are essential steps in numerous industrial applications from perfume over pharmaceutical to fine chemical industry. Nowadays, there are three key aspects in industrial extraction processes: economy and quality, as well as environmental considerations. This book presents a complete picture of current knowledge on green extraction in terms of innovative processes, original methods, alternative solvents and safe products, and provides the necessary theoretical background as well as industrial application examples and environmental impacts. Each chapter is written by experts in the field and the strong focus on green chemistry throughout the book makes this book a unique reference source. This book is intended to be a first step towards a future cooperation in a new extraction of natural products, built to improve both fundamental and green parameters of the techniques and to increase the amount of extracts obtained from renewable resources with a minimum consumption of energy and solvents, and the maximum safety for operators and the environment.
"Molecular Gels: Materials with Self-Assembled Fibrillar Networks" is a comprehensive treatise on gelators, especially low molecular-mass gelators and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of low molecular-mass gelators are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual low molecular-mass gelator molecules leading to SAFINs. Several actual and potential applications of molecular gels in disparate fields (from silicate replication of nanostructures to art conservation) are described. Special emphasis is placed on perspectives for future developments. This book is an invaluable resource for researchers and practitioners either already researching self-assembly and soft matter or new to the area. Those who will find the book useful include chemists, engineers, spectroscopists, physicists, biologists, theoreticians, and materials scientists.
Aqueous solubility is one of the major challenges in the early stages of drug discovery. One of the most common and effective methods for enhancing solubility is the addition of an organic solvent to the aqueous solution. Along with an introduction to cosolvency models, the Handbook of Solubility Data for Pharmaceuticals provides an extensive datab
Hot-melt extrusion (HME) - melting a substance and forcing it through an orifice under controlled conditions to form a new material - is an emerging processing technology in the pharmaceutical industry for the preparation of various dosage forms and drug delivery systems, for example granules and sustained release tablets. Hot-Melt Extrusion: Pharmaceutical Applications covers the main instrumentation, operation principles and theoretical background of HME. It then focuses on HME drug delivery systems, dosage forms and clinical studies (including pharmacokinetics and bioavailability) of HME products. Finally, the book includes some recent and novel HME applications, scale -up considerations and regulatory issues. Topics covered include: principles and die design of single screw extrusion twin screw extrusion techniques and practices in the laboratory and on production scale HME developments for the pharmaceutical industry solubility parameters for prediction of drug/polymer miscibility in HME formulations the influence of plasticizers in HME applications of polymethacrylate polymers in HME HME of ethylcellulose, hypromellose, and polyethylene oxide bioadhesion properties of polymeric films produced by HME taste masking using HME clinical studies, bioavailability and pharmacokinetics of HME products injection moulding and HME processing for pharmaceutical materials laminar dispersive & distributive mixing with dissolution and applications to HME technological considerations related to scale-up of HME processes devices and implant systems by HME an FDA perspective on HME product and process understanding improved process understanding and control of an HME process with near-infrared spectroscopy Hot-Melt Extrusion: Pharmaceutical Applications is an essential multidisciplinary guide to the emerging pharmaceutical uses of this processing technology for researchers in academia and industry working in drug formulation and delivery, pharmaceutical engineering and processing, and polymers and materials science. This is the first book from our brand new series Advances in Pharmaceutical Technology. Find out more about the series here.
Explains the physics and chemistry of adhesion, surface preparation and testsPresents new strategies for formulating superior strong, weak and pressure-sensitive adhesivesIncludes access to unique electronic apps that enable numerical modeling of adhesives This technical bound book explains the basic principles of adhesion and shows how they are used to formulate and improve adhesives. The volume starts by laying out key physical and chemical concepts underlying adhesion and adhesives, including strong and weak bonds plus pressure-sensitive (PSA) across multiple polymer, metal and ceramic adherends. The ideas are expressed in clear and easily understood mathematical formulas that explain surface properties as well as "good" and "bad" adhesion, with the latter covering multiple types of adhesive failure. In this context, the book presents a detailed explanation of methods to predict, test and formulate adhesives and critically analyzes test results and traditionally accepted rules for adhesive formulation. The eBook version includes online access to a unique set of applied computer programs or "apps" that automate a wide range of adhesive formulas and enable readers to input their own data and numerically model adhesion properties in conjunction with, or prior to, chemical compounding and empirical testing. This volume constitutes a lucid and practical introduction to adhesion and adhesives appropriate for specialists at all levels.
Organic solvents represent a class of compounds whose utility is central to industrial and academic chemistry. The impact of solvents in everyday products such as paints, surface coatings, adhesives, pharmaceuticals and cleaning products is enormous, and there is therefore much interest in their use. This volume is divided into two parts. Part 1 provides and authoritative review of the science and technology of solvents and related issues. The topics covered are solvency and its measurement, flammability, health and toxicology, environmental issues, legislative information, transport, storage, recovery and disposal, and a review of solvent applications. Part 2 provides reliable, up- to-date data, based on information provided by manufacturers and suppliers and is presented as a database of over 350 solvent products, subdivided by solvent group. The data are also presented in key parameter tables, covering boiling points, melting points, evaporation information, vapor pressure, flash points, solubility parameters, auto ignition temperatures, and names and addresses of manufacturers, with trade names. In recent years there has been increased interest in health and safety, environmental issues and aspects of the legislative control of chemicals, including solvents, and the choice of a given solvent has therefore become more complex. The Directory of Solvents aims to provide in one place a broad spread of physico-chemical data, together with transport, safety, environmental and classification information provided by major European and U.S. suppliers and manufacturers of industrial organic solvents.
The main challenge in modern solvent extraction separation is that most techniques are mainly empirical, specific and particular for narrow fields of practice and require a large degree of experimentation. This concise and modern book provides a complete overview of both solvent extraction separation techniques and the novel and unified competitive complexation/solvation theory. This novel and unified technique presented in the book provides a key for a preliminary quantitative prediction of suitable extraction systems without experimentation, thus saving researchers time and resources. Analyzes and compares both classical and new competitive models and techniques Offers a novel and unified competitive complexation / solvation theory that permits researchers to standardize some parameters, which decreases the need for experimentation at R&D Presents examples of applications in multiple disciplines such as chemical, biochemical, radiochemical, pharmaceutical and analytical separation Written by an outstanding scientist who is prolific in the field of separation science