Hands-On Neuroevolution with Python

Hands-On Neuroevolution with Python

Author: Iaroslav Omelianenko

Publisher: Packt Publishing Ltd

Published: 2019-12-24

Total Pages: 359

ISBN-13: 1838822003

DOWNLOAD EBOOK

Increase the performance of various neural network architectures using NEAT, HyperNEAT, ES-HyperNEAT, Novelty Search, SAFE, and deep neuroevolution Key FeaturesImplement neuroevolution algorithms to improve the performance of neural network architecturesUnderstand evolutionary algorithms and neuroevolution methods with real-world examplesLearn essential neuroevolution concepts and how they are used in domains including games, robotics, and simulationsBook Description Neuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems. You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones. By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments. What you will learnDiscover the most popular neuroevolution algorithms – NEAT, HyperNEAT, and ES-HyperNEATExplore how to implement neuroevolution-based algorithms in PythonGet up to speed with advanced visualization tools to examine evolved neural network graphsUnderstand how to examine the results of experiments and analyze algorithm performanceDelve into neuroevolution techniques to improve the performance of existing methodsApply deep neuroevolution to develop agents for playing Atari gamesWho this book is for This book is for machine learning practitioners, deep learning researchers, and AI enthusiasts who are looking to implement neuroevolution algorithms from scratch. Working knowledge of the Python programming language and basic knowledge of deep learning and neural networks are mandatory.


Hands-On Python Deep Learning for the Web

Hands-On Python Deep Learning for the Web

Author: Anubhav Singh

Publisher: Packt Publishing Ltd

Published: 2020-05-15

Total Pages: 390

ISBN-13: 1789953790

DOWNLOAD EBOOK

Use the power of deep learning with Python to build and deploy intelligent web applications Key FeaturesCreate next-generation intelligent web applications using Python libraries such as Flask and DjangoImplement deep learning algorithms and techniques for performing smart web automationIntegrate neural network architectures to create powerful full-stack web applicationsBook Description When used effectively, deep learning techniques can help you develop intelligent web apps. In this book, you'll cover the latest tools and technological practices that are being used to implement deep learning in web development using Python. Starting with the fundamentals of machine learning, you'll focus on DL and the basics of neural networks, including common variants such as convolutional neural networks (CNNs). You'll learn how to integrate them into websites with the frontends of different standard web tech stacks. The book then helps you gain practical experience of developing a deep learning-enabled web app using Python libraries such as Django and Flask by creating RESTful APIs for custom models. Later, you'll explore how to set up a cloud environment for deep learning-based web deployments on Google Cloud and Amazon Web Services (AWS). Next, you'll learn how to use Microsoft's intelligent Emotion API, which can detect a person's emotions through a picture of their face. You'll also get to grips with deploying real-world websites, in addition to learning how to secure websites using reCAPTCHA and Cloudflare. Finally, you'll use NLP to integrate a voice UX through Dialogflow on your web pages. By the end of this book, you'll have learned how to deploy intelligent web apps and websites with the help of effective tools and practices. What you will learnExplore deep learning models and implement them in your browserDesign a smart web-based client using Django and FlaskWork with different Python-based APIs for performing deep learning tasksImplement popular neural network models with TensorFlow.jsDesign and build deep web services on the cloud using deep learningGet familiar with the standard workflow of taking deep learning models into productionWho this book is for This deep learning book is for data scientists, machine learning practitioners, and deep learning engineers who are looking to perform deep learning techniques and methodologies on the web. You will also find this book useful if you’re a web developer who wants to implement smart techniques in the browser to make it more interactive. Working knowledge of the Python programming language and basic machine learning techniques will be beneficial.


Handbook of Neuroevolution Through Erlang

Handbook of Neuroevolution Through Erlang

Author: Gene I. Sher

Publisher: Springer Science & Business Media

Published: 2012-11-06

Total Pages: 836

ISBN-13: 1461444632

DOWNLOAD EBOOK

Handbook of Neuroevolution Through Erlang presents both the theory behind, and the methodology of, developing a neuroevolutionary-based computational intelligence system using Erlang. With a foreword written by Joe Armstrong, this handbook offers an extensive tutorial for creating a state of the art Topology and Weight Evolving Artificial Neural Network (TWEANN) platform. In a step-by-step format, the reader is guided from a single simulated neuron to a complete system. By following these steps, the reader will be able to use novel technology to build a TWEANN system, which can be applied to Artificial Life simulation, and Forex trading. Because of Erlang’s architecture, it perfectly matches that of evolutionary and neurocomptational systems. As a programming language, it is a concurrent, message passing paradigm which allows the developers to make full use of the multi-core & multi-cpu systems. Handbook of Neuroevolution Through Erlang explains how to leverage Erlang’s features in the field of machine learning, and the system’s real world applications, ranging from algorithmic financial trading to artificial life and robotics.


Hands-On Reinforcement Learning for Games

Hands-On Reinforcement Learning for Games

Author: Micheal Lanham

Publisher: Packt Publishing Ltd

Published: 2020-01-03

Total Pages: 420

ISBN-13: 1839216778

DOWNLOAD EBOOK

Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow Key FeaturesGet to grips with the different reinforcement and DRL algorithms for game developmentLearn how to implement components such as artificial agents, map and level generation, and audio generationGain insights into cutting-edge RL research and understand how it is similar to artificial general researchBook Description With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications. What you will learnUnderstand how deep learning can be integrated into an RL agentExplore basic to advanced algorithms commonly used in game developmentBuild agents that can learn and solve problems in all types of environmentsTrain a Deep Q-Network (DQN) agent to solve the CartPole balancing problemDevelop game AI agents by understanding the mechanism behind complex AIIntegrate all the concepts learned into new projects or gaming agentsWho this book is for If you’re a game developer looking to implement AI techniques to build next-generation games from scratch, this book is for you. Machine learning and deep learning practitioners, and RL researchers who want to understand how to use self-learning agents in the game domain will also find this book useful. Knowledge of game development and Python programming experience are required.


Hands-On Genetic Algorithms with Python

Hands-On Genetic Algorithms with Python

Author: Eyal Wirsansky

Publisher: Packt Publishing Ltd

Published: 2020-01-31

Total Pages: 334

ISBN-13: 1838559183

DOWNLOAD EBOOK

Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy Key Features Explore the ins and outs of genetic algorithms with this fast-paced guide Implement tasks such as feature selection, search optimization, and cluster analysis using Python Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications Book DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learn Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications Use genetic algorithms to optimize functions and solve planning and scheduling problems Enhance the performance of machine learning models and optimize deep learning network architecture Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym Explore how images can be reconstructed using a set of semi-transparent shapes Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization Who this book is for This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.


The Nature of Code

The Nature of Code

Author: Daniel Shiffman

Publisher: No Starch Press

Published: 2024-09-03

Total Pages: 642

ISBN-13: 1718503717

DOWNLOAD EBOOK

All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.


Automated Machine Learning

Automated Machine Learning

Author: Frank Hutter

Publisher: Springer

Published: 2019-05-17

Total Pages: 223

ISBN-13: 3030053180

DOWNLOAD EBOOK

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.


Applications of Evolutionary Computation

Applications of Evolutionary Computation

Author: Pedro A. Castillo

Publisher: Springer Nature

Published: 2021-03-31

Total Pages: 836

ISBN-13: 3030726991

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 24th International Conference on Applications of Evolutionary Computation, EvoApplications 2021, held as part of Evo*2021, as Virtual Event, in April 2021, co-located with the Evo*2021 events EuroGP, EvoCOP, and EvoMUSART. The 51 revised full papers presented in this book were carefully reviewed and selected from 78 submissions. The papers cover a wide spectrum of topics, ranging from applications of evolutionary computation; applications of deep bioinspired algorithms; soft computing applied to games; machine learning and AI in digital healthcare and personalized medicine; evolutionary computation in image analysis, signal processing and pattern recognition; evolutionary machine learning; parallel and distributed systems; and applications of nature inspired computing for sustainability and development.​


Artificial Intelligence and Games

Artificial Intelligence and Games

Author: Georgios N. Yannakakis

Publisher: Springer

Published: 2018-02-17

Total Pages: 350

ISBN-13: 3319635190

DOWNLOAD EBOOK

This is the first textbook dedicated to explaining how artificial intelligence (AI) techniques can be used in and for games. After introductory chapters that explain the background and key techniques in AI and games, the authors explain how to use AI to play games, to generate content for games and to model players. The book will be suitable for undergraduate and graduate courses in games, artificial intelligence, design, human-computer interaction, and computational intelligence, and also for self-study by industrial game developers and practitioners. The authors have developed a website (http://www.gameaibook.org) that complements the material covered in the book with up-to-date exercises, lecture slides and reading.


Hands-On Explainable AI (XAI) with Python

Hands-On Explainable AI (XAI) with Python

Author: Denis Rothman

Publisher: Packt Publishing Ltd

Published: 2020-07-31

Total Pages: 455

ISBN-13: 1800202768

DOWNLOAD EBOOK

Resolve the black box models in your AI applications to make them fair, trustworthy, and secure. Familiarize yourself with the basic principles and tools to deploy Explainable AI (XAI) into your apps and reporting interfaces. Key FeaturesLearn explainable AI tools and techniques to process trustworthy AI resultsUnderstand how to detect, handle, and avoid common issues with AI ethics and biasIntegrate fair AI into popular apps and reporting tools to deliver business value using Python and associated toolsBook Description Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex. Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications. You will build XAI solutions in Python, TensorFlow 2, Google Cloud’s XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle. You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces. By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI. What you will learnPlan for XAI through the different stages of the machine learning life cycleEstimate the strengths and weaknesses of popular open-source XAI applicationsExamine how to detect and handle bias issues in machine learning dataReview ethics considerations and tools to address common problems in machine learning dataShare XAI design and visualization best practicesIntegrate explainable AI results using Python modelsUse XAI toolkits for Python in machine learning life cycles to solve business problemsWho this book is for This book is not an introduction to Python programming or machine learning concepts. You must have some foundational knowledge and/or experience with machine learning libraries such as scikit-learn to make the most out of this book. Some of the potential readers of this book include: Professionals who already use Python for as data science, machine learning, research, and analysisData analysts and data scientists who want an introduction into explainable AI tools and techniquesAI Project managers who must face the contractual and legal obligations of AI Explainability for the acceptance phase of their applications