Hands-On Design Patterns and Best Practices with Julia

Hands-On Design Patterns and Best Practices with Julia

Author: Tom Kwong

Publisher: Packt Publishing Ltd

Published: 2020-01-17

Total Pages: 521

ISBN-13: 1838646612

DOWNLOAD EBOOK

Design and develop high-performance, reusable, and maintainable applications using traditional and modern Julia patterns with this comprehensive guide Key FeaturesExplore useful design patterns along with object-oriented programming in Julia 1.0Implement macros and metaprogramming techniques to make your code faster, concise, and efficientDevelop the skills necessary to implement design patterns for creating robust and maintainable applicationsBook Description Design patterns are fundamental techniques for developing reusable and maintainable code. They provide a set of proven solutions that allow developers to solve problems in software development quickly. This book will demonstrate how to leverage design patterns with real-world applications. Starting with an overview of design patterns and best practices in application design, you'll learn about some of the most fundamental Julia features such as modules, data types, functions/interfaces, and metaprogramming. You'll then get to grips with the modern Julia design patterns for building large-scale applications with a focus on performance, reusability, robustness, and maintainability. The book also covers anti-patterns and how to avoid common mistakes and pitfalls in development. You'll see how traditional object-oriented patterns can be implemented differently and more effectively in Julia. Finally, you'll explore various use cases and examples, such as how expert Julia developers use design patterns in their open source packages. By the end of this Julia programming book, you'll have learned methods to improve software design, extensibility, and reusability, and be able to use design patterns efficiently to overcome common challenges in software development. What you will learnMaster the Julia language features that are key to developing large-scale software applicationsDiscover design patterns to improve overall application architecture and designDevelop reusable programs that are modular, extendable, performant, and easy to maintainWeigh up the pros and cons of using different design patterns for use casesExplore methods for transitioning from object-oriented programming to using equivalent or more advanced Julia techniquesWho this book is for This book is for beginner to intermediate-level Julia programmers who want to enhance their skills in designing and developing large-scale applications.


Hands-On Design Patterns with Julia 1.0

Hands-On Design Patterns with Julia 1.0

Author: Tom Kwong

Publisher:

Published: 2020-01-17

Total Pages: 532

ISBN-13: 9781838648817

DOWNLOAD EBOOK

Design and develop high-performance, reusable, and maintainable applications using traditional and modern Julia patterns with this comprehensive guide Key Features Explore useful design patterns along with object-oriented programming in Julia 1.0 Implement macros and metaprogramming techniques to make your code faster, concise, and efficient Develop the skills necessary to implement design patterns for creating robust and maintainable applications Book Description Design patterns are fundamental techniques for developing reusable and maintainable code. They provide a set of proven solutions that allow developers to solve problems in software development quickly. This book will demonstrate how to leverage design patterns with real-world applications. Starting with an overview of design patterns and best practices in application design, you'll learn about some of the most fundamental Julia features such as modules, data types, functions/interfaces, and metaprogramming. You'll then get to grips with the modern Julia design patterns for building large-scale applications with a focus on performance, reusability, robustness, and maintainability. The book also covers anti-patterns and how to avoid common mistakes and pitfalls in development. You'll see how traditional object-oriented patterns can be implemented differently and more effectively in Julia. Finally, you'll explore various use cases and examples, such as how expert Julia developers use design patterns in their open source packages. By the end of this Julia programming book, you'll have learned methods to improve software design, extensibility, and reusability, and be able to use design patterns efficiently to overcome common challenges in software development. What you will learn Master the Julia language features that are key to developing large-scale software applications Discover design patterns to improve overall application architecture and design Develop reusable programs that are modular, extendable, performant, and easy to maintain Weigh up the pros and cons of using different design patterns for use cases Explore methods for transitioning from object-oriented programming to using equivalent or more advanced Julia techniques Who this book is for This book is for beginner to intermediate-level Julia programmers who want to enhance their skills in designing and developing large-scale applications.


Think Julia

Think Julia

Author: Ben Lauwens

Publisher: O'Reilly Media

Published: 2019-04-05

Total Pages: 298

ISBN-13: 1492045004

DOWNLOAD EBOOK

If you’re just learning how to program, Julia is an excellent JIT-compiled, dynamically typed language with a clean syntax. This hands-on guide uses Julia 1.0 to walk you through programming one step at a time, beginning with basic programming concepts before moving on to more advanced capabilities, such as creating new types and multiple dispatch. Designed from the beginning for high performance, Julia is a general-purpose language ideal for not only numerical analysis and computational science but also web programming and scripting. Through exercises in each chapter, you’ll try out programming concepts as you learn them. Think Julia is perfect for students at the high school or college level as well as self-learners and professionals who need to learn programming basics. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand types, methods, and multiple dispatch Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design and data structures through case studies


Julia High Performance

Julia High Performance

Author: Avik Sengupta

Publisher: Packt Publishing Ltd

Published: 2019-06-10

Total Pages: 210

ISBN-13: 1788292308

DOWNLOAD EBOOK

Design and develop high-performance programs in Julia 1.0 Key FeaturesLearn the characteristics of high-performance Julia codeUse the power of the GPU to write efficient numerical codeSpeed up your computation with the help of newly introduced shared memory multi-threading in Julia 1.0Book Description Julia is a high-level, high-performance dynamic programming language for numerical computing. If you want to understand how to avoid bottlenecks and design your programs for the highest possible performance, then this book is for you. The book starts with how Julia uses type information to achieve its performance goals, and how to use multiple dispatches to help the compiler emit high-performance machine code. After that, you will learn how to analyze Julia programs and identify issues with time and memory consumption. We teach you how to use Julia's typing facilities accurately to write high-performance code and describe how the Julia compiler uses type information to create fast machine code. Moving ahead, you'll master design constraints and learn how to use the power of the GPU in your Julia code and compile Julia code directly to the GPU. Then, you'll learn how tasks and asynchronous IO help you create responsive programs and how to use shared memory multithreading in Julia. Toward the end, you will get a flavor of Julia's distributed computing capabilities and how to run Julia programs on a large distributed cluster. By the end of this book, you will have the ability to build large-scale, high-performance Julia applications, design systems with a focus on speed, and improve the performance of existing programs. What you will learnUnderstand how Julia code is transformed into machine codeMeasure the time and memory taken by Julia programs Create fast machine code using Julia's type information Define and call functions without compromising Julia's performance Accelerate your code via the GPUUse tasks and asynchronous IO for responsive programsRun Julia programs on large distributed clustersWho this book is for This book is for beginners and intermediate Julia programmers who are interested in high-performance technical programming. A basic knowledge of Julia programming is assumed.


Julia Programming Projects

Julia Programming Projects

Author: Adrian Salceanu

Publisher: Packt Publishing Ltd

Published: 2018-12-26

Total Pages: 494

ISBN-13: 1788297253

DOWNLOAD EBOOK

A step-by-step guide that demonstrates how to build simple-to-advanced applications through examples in Julia Lang 1.x using modern tools Key FeaturesWork with powerful open-source libraries for data wrangling, analysis, and visualizationDevelop full-featured, full-stack web applications Learn to perform supervised and unsupervised machine learning and time series analysis with JuliaBook Description Julia is a new programming language that offers a unique combination of performance and productivity. Its powerful features, friendly syntax, and speed are attracting a growing number of adopters from Python, R, and Matlab, effectively raising the bar for modern general and scientific computing. After six years in the making, Julia has reached version 1.0. Now is the perfect time to learn it, due to its large-scale adoption across a wide range of domains, including fintech, biotech, education, and AI. Beginning with an introduction to the language, Julia Programming Projects goes on to illustrate how to analyze the Iris dataset using DataFrames. You will explore functions and the type system, methods, and multiple dispatch while building a web scraper and a web app. Next, you'll delve into machine learning, where you'll build a books recommender system. You will also see how to apply unsupervised machine learning to perform clustering on the San Francisco business database. After metaprogramming, the final chapters will discuss dates and time, time series analysis, visualization, and forecasting. We'll close with package development, documenting, testing and benchmarking. By the end of the book, you will have gained the practical knowledge to build real-world applications in Julia. What you will learnLeverage Julia's strengths, its top packages, and main IDE optionsAnalyze and manipulate datasets using Julia and DataFramesWrite complex code while building real-life Julia applicationsDevelop and run a web app using Julia and the HTTP packageBuild a recommender system using supervised machine learning Perform exploratory data analysis Apply unsupervised machine learning algorithmsPerform time series data analysis, visualization, and forecastingWho this book is for Data scientists, statisticians, business analysts, and developers who are interested in learning how to use Julia to crunch numbers, analyze data and build apps will find this book useful. A basic knowledge of programming is assumed.


Julia 1.0 Programming Complete Reference Guide

Julia 1.0 Programming Complete Reference Guide

Author: Ivo Balbaert

Publisher: Packt Publishing Ltd

Published: 2019-05-20

Total Pages: 455

ISBN-13: 1838824677

DOWNLOAD EBOOK

Learn dynamic programming with Julia to build apps for data analysis, visualization, machine learning, and the web Key FeaturesLeverage Julia's high speed and efficiency to build fast, efficient applicationsPerform supervised and unsupervised machine learning and time series analysisTackle problems concurrently and in a distributed environmentBook Description Julia offers the high productivity and ease of use of Python and R with the lightning-fast speed of C++. There’s never been a better time to learn this language, thanks to its large-scale adoption across a wide range of domains, including fintech, biotech and artificial intelligence (AI). You will begin by learning how to set up a running Julia platform, before exploring its various built-in types. This Learning Path walks you through two important collection types: arrays and matrices. You’ll be taken through how type conversions and promotions work, and in further chapters you'll study how Julia interacts with operating systems and other languages. You’ll also learn about the use of macros, what makes Julia suitable for numerical and scientific computing, and how to run external programs. Once you have grasped the basics, this Learning Path goes on to how to analyze the Iris dataset using DataFrames. While building a web scraper and a web app, you’ll explore the use of functions, methods, and multiple dispatches. In the final chapters, you'll delve into machine learning, where you'll build a book recommender system. By the end of this Learning Path, you’ll be well versed with Julia and have the skills you need to leverage its high speed and efficiency for your applications. This Learning Path includes content from the following Packt products: Julia 1.0 Programming - Second Edition by Ivo BalbaertJulia Programming Projects by Adrian SalceanuWhat you will learnCreate your own types to extend the built-in type systemVisualize your data in Julia with plotting packagesExplore the use of built-in macros for testing and debuggingIntegrate Julia with other languages such as C, Python, and MATLABAnalyze and manipulate datasets using Julia and DataFramesDevelop and run a web app using Julia and the HTTP packageBuild a recommendation system using supervised machine learningWho this book is for If you are a statistician or data scientist who wants a quick course in the Julia programming language while building big data applications, this Learning Path is for you. Basic knowledge of mathematics and programming is a must.


Learning Julia

Learning Julia

Author: Anshul Joshi

Publisher: Packt Publishing Ltd

Published: 2017-11-24

Total Pages: 308

ISBN-13: 1785885367

DOWNLOAD EBOOK

Learn Julia language for data science and data analytics About This Book Set up Julia's environment and start building simple programs Explore the technical aspects of Julia and its potential when it comes to speed and data processing Write efficient and high-quality code in Julia Who This Book Is For This book allows existing programmers, statisticians and data scientists to learn the Julia and take its advantage while building applications with complex numerical and scientific computations. Basic knowledge of mathematics is needed to understand the various methods that will be used or created in the book to exploit the capabilities for which Julia is made. What You Will Learn Understand Julia's ecosystem and create simple programs Master the type system and create your own types in Julia Understand Julia's type system, annotations, and conversions Define functions and understand meta-programming and multiple dispatch Create graphics and data visualizations using Julia Build programs capable of networking and parallel computation Develop real-world applications and use connections for RDBMS and NoSQL Learn to interact with other programming languages–C and Python—using Julia In Detail Julia is a highly appropriate language for scientific computing, but it comes with all the required capabilities of a general-purpose language. It allows us to achieve C/Fortran-like performance while maintaining the concise syntax of a scripting language such as Python. It is perfect for building high-performance and concurrent applications. From the basics of its syntax to learning built-in object types, this book covers it all. This book shows you how to write effective functions, reduce code redundancies, and improve code reuse. It will be helpful for new programmers who are starting out with Julia to explore its wide and ever-growing package ecosystem and also for experienced developers/statisticians/data scientists who want to add Julia to their skill-set. The book presents the fundamentals of programming in Julia and in-depth informative examples, using a step-by-step approach. You will be taken through concepts and examples such as doing simple mathematical operations, creating loops, metaprogramming, functions, collections, multiple dispatch, and so on. By the end of the book, you will be able to apply your skills in Julia to create and explore applications of any domain. Style and approach This book demonstrates the basics of Julia along with some data structures and testing tools that will give you enough material to get started with the language from an application standpoint.


Mastering Julia

Mastering Julia

Author: Malcolm Sherrington

Publisher: Packt Publishing Ltd

Published: 2015-07-22

Total Pages: 410

ISBN-13: 1783553324

DOWNLOAD EBOOK

Julia is a well-constructed programming language with fast execution speed, eliminating the classic problem of performing analysis in one language and translating it for performance into a second. This book will help you develop and enhance your programming skills in Julia to solve real-world automation challenges. This book starts off with a refresher on installing and running Julia on different platforms. Next, you will compare the different ways of working with Julia and explore Julia's key features in-depth by looking at design and build. You will see how data works using simple statistics and analytics, and discover Julia's speed, its real strength, which makes it particularly useful in highly intensive computing tasks and observe how Julia can cooperate with external processes in order to enhance graphics and data visualization. Finally, you will look into meta-programming and learn how it adds great power to the language and establish networking and distributed computing with Julia.


Hands-On Machine Learning with Microsoft Excel 2019

Hands-On Machine Learning with Microsoft Excel 2019

Author: Julio Cesar Rodriguez Martino

Publisher: Packt Publishing Ltd

Published: 2019-04-30

Total Pages: 243

ISBN-13: 178934512X

DOWNLOAD EBOOK

A practical guide to getting the most out of Excel, using it for data preparation, applying machine learning models (including cloud services) and understanding the outcome of the data analysis. Key FeaturesUse Microsoft's product Excel to build advanced forecasting models using varied examples Cover range of machine learning tasks such as data mining, data analytics, smart visualization, and more Derive data-driven techniques using Excel plugins and APIs without much code required Book Description We have made huge progress in teaching computers to perform difficult tasks, especially those that are repetitive and time-consuming for humans. Excel users, of all levels, can feel left behind by this innovation wave. The truth is that a large amount of the work needed to develop and use a machine learning model can be done in Excel. The book starts by giving a general introduction to machine learning, making every concept clear and understandable. Then, it shows every step of a machine learning project, from data collection, reading from different data sources, developing models, and visualizing the results using Excel features and offerings. In every chapter, there are several examples and hands-on exercises that will show the reader how to combine Excel functions, add-ins, and connections to databases and to cloud services to reach the desired goal: building a full data analysis flow. Different machine learning models are shown, tailored to the type of data to be analyzed. At the end of the book, the reader is presented with some advanced use cases using Automated Machine Learning, and artificial neural network, which simplifies the analysis task and represents the future of machine learning. What you will learnUse Excel to preview and cleanse datasetsUnderstand correlations between variables and optimize the input to machine learning modelsUse and evaluate different machine learning models from ExcelUnderstand the use of different visualizationsLearn the basic concepts and calculations to understand how artificial neural networks workLearn how to connect Excel to the Microsoft Azure cloudGet beyond proof of concepts and build fully functional data analysis flowsWho this book is for This book is for data analysis, machine learning enthusiasts, project managers, and someone who doesn't want to code much for performing core tasks of machine learning. Each example will help you perform end-to-end smart analytics. Working knowledge of Excel is required.


Numerical Linear Algebra with Julia

Numerical Linear Algebra with Julia

Author: Eric Darve

Publisher: SIAM

Published: 2021-09-02

Total Pages: 420

ISBN-13: 1611976553

DOWNLOAD EBOOK

Numerical Linear Algebra with Julia provides in-depth coverage of fundamental topics in numerical linear algebra, including how to solve dense and sparse linear systems, compute QR factorizations, compute the eigendecomposition of a matrix, and solve linear systems using iterative methods such as conjugate gradient. Julia code is provided to illustrate concepts and allow readers to explore methods on their own. Written in a friendly and approachable style, the book contains detailed descriptions of algorithms along with illustrations and graphics that emphasize core concepts and demonstrate the algorithms. Numerical Linear Algebra with Julia is a textbook for advanced undergraduate and graduate students in most STEM fields and is appropriate for courses in numerical linear algebra. It may also serve as a reference for researchers in various fields who depend on numerical solvers in linear algebra.