You know mathematics. You know how to write mathematics. But do you know how to produce clean, clear, well-formatted manuscripts for publication? Do you speak the language of publishers, typesetters, graphics designers, and copy editors? Becoming acquainted with this material will make you a well-informed author equipped to deal with publishers, compositors, editors, and typesetters, with TeX consultants, copy editors, and graphics designers-an author who has a better understanding of the publishing process and is able to create better mathematics books.
Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.
Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.
Offers detailed technical information and advice on the step-by-step process involved in making high-quality scientific photographs, from buying equipment to mounting finished work.
This handy volume, enlivened by anecdotes, unusual paper titles, and humorous quotations, provides even more information on the issues you will face when writing a technical paper or talk, from choosing the right journal in which to publish to handling your references. Its overview of the entire publication process is invaluable for anyone hoping to publish in a technical journal.