Functional ecology is the branch of ecology that focuses on various functions that species play in the community or ecosystem in which they occur. This accessible guide offers the main concepts and tools in trait-based ecology, and their tricks, covering different trophic levels and organism types. It is designed for students, researchers and practitioners who wish to get a handy synthesis of existing concepts, tools and trends in trait-based ecology, and wish to apply it to their own field of interest. Where relevant, exercises specifically designed to be run in R are included, along with accompanying on-line resources including solutions for exercises and R functions, and updates reflecting current developments in this fast-changing field. Based on more than a decade of teaching experience, the authors developed and improved the way theoretical aspects and analytical tools of trait-based ecology are introduced and explained to readers.
Community ecology has undergone a transformation in recent years, from a discipline largely focused on processes occurring within a local area to a discipline encompassing a much richer domain of study, including the linkages between communities separated in space (metacommunity dynamics), niche and neutral theory, the interplay between ecology and evolution (eco-evolutionary dynamics), and the influence of historical and regional processes in shaping patterns of biodiversity. To fully understand these new developments, however, students continue to need a strong foundation in the study of species interactions and how these interactions are assembled into food webs and other ecological networks. This new edition fulfils the book's original aims, both as a much-needed up-to-date and accessible introduction to modern community ecology, and in identifying the important questions that are yet to be answered. This research-driven textbook introduces state-of-the-art community ecology to a new generation of students, adopting reasoned and balanced perspectives on as-yet-unresolved issues. Community Ecology is suitable for advanced undergraduates, graduate students, and researchers seeking a broad, up-to-date coverage of ecological concepts at the community level.
Theoretical Ecology: concepts and applications continues the authoritative and established sequence of theoretical ecology books initiated by Robert M. May which helped pave the way for ecology to become a more robust theoretical science, encouraging the modern biologist to better understand the mathematics behind their theories. This latest instalment builds on the legacy of its predecessors with a completely new set of contributions. Rather than placing emphasis on the historical ideas in theoretical ecology, the Editors have encouraged each contribution to: synthesize historical theoretical ideas within modern frameworks that have emerged in the last 10-20 years (e.g. bridging population interactions to whole food webs); describe novel theory that has emerged in the last 20 years from historical empirical areas (e.g. macro-ecology); and finally to cover the rapidly expanding area of theoretical ecological applications (e.g. disease theory and global change theory). The result is a forward-looking synthesis that will help guide the field through a further decade of discovery and development. It is written for upper level undergraduate students, graduate students, and researchers seeking synthesis and the state of the art in growing areas of interest in theoretical ecology, genetics, evolutionary ecology, and mathematical biology.
Life histories can be defined as the means by which individuals (or more precisely genotypes) vary their age- or stage-specific expenditures of reproductive effort in response to genetic, phenotypic, and environmental correlates of survival and fecundity. Life histories reflect the expression of traits most closely related to individual fitness, such as age and size at maturity, number and size of offspring, and the timing of the expression of those traits throughout an individual's life. In addition to addressing questions of fundamental importance to ecology and evolution, life-history research plays an integral role in species conservation and management. This accessible primer encompasses the basic concepts, theories, and applied elements of life history evolution, including patterns of trait variability, underlying mechanisms of plastic/evolutionary change, and the practical utility of life-history traits as metrics of species/population recovery, sustainable exploitation, and risk of extinction. Empirical examples are drawn from the entire spectrum of life. A Primer of Life Histories is designed for readers from a broad range of academic backgrounds and experience including graduate students and researchers of ecology and evolutionary biology. It will also be useful to a more applied audience of academic/government researchers in fields such as wildlife biology, conservation biology, fisheries science, and the environmental sciences.
In the course of evolution, a great variety of root systems have learned to overcome the many physical, biochemical and biological problems brought about by soil. This development has made them a fascinating object of scientific study. This volume gives an overview of how roots have adapted to the soil environment and which roles they play in the soil ecosystem. The text describes the form and function of roots, their temporal and spatial distribution, and their turnover rate in various ecosystems. Subsequently, a physiological background is provided for basic functions, such as carbon acquisition, water and solute movement, and for their responses to three major abiotic stresses, i.e. hard soil structure, drought and flooding. The volume concludes with the interactions of roots with other organisms of the complex soil ecosystem, including symbiosis, competition, and the function of roots as a food source.
Phylogenies in Ecology is the first book to critically review the application of phylogenetic methods in ecology, and it serves as a primer to working ecologists and students of ecology wishing to understand these methods. This book demonstrates how phylogenetic information is transforming ecology by offering fresh ways to estimate the similarities and differences among species, and by providing deeper, evolutionary-based insights on species distributions, coexistence, and niche partitioning. Marc Cadotte and Jonathan Davies examine this emerging area's explosive growth, allowing for this new body of hypotheses testing. Cadotte and Davies systematically look at all the main areas of current ecophylogenetic methodology, testing, and inference. Each chapter of their book covers a unique topic, emphasizes key assumptions, and introduces the appropriate statistical methods and null models required for testing phylogenetically informed hypotheses. The applications presented throughout are supported and connected by examples relying on real-world data that have been analyzed using the open-source programming language, R. Showing how phylogenetic methods are shedding light on fundamental ecological questions related to species coexistence, conservation, and global change, Phylogenies in Ecology will interest anyone who thinks that evolution might be important in their data.