A compendium of findings about such characteristics of metals at high temperature as density, thermal expansion, heat capacity, diffusivity, elastic properties, transport coefficients, electrical resistance, thermal conductivity, absolute thermoelectric power, and the Hall coefficient. After explain
A quick and easy to use source for qualified thermal properties of metals and alloys. The data tables are arranged by material hierarchy, with summary tables sorted by property value. Values are given for a range of high and low temperatures. Short technical discussions at the beginning of each chapter are designed to refresh the reader's understanding of the properties and units covered in that section
Compiled by an expert in the field, the book provides an engineer with data they can trust. Spanning gases, liquids, and solids, all critical properties (including viscosity, thermal conductivity, and diffusion coefficient) are covered. From C1 to C100 organics and Ac to Zr inorganics, the data in this handbook is a perfect quick reference for field, lab or classroom usage. By collecting a large – but relevant – amount of information in one source, the handbook enables engineers to spend more time developing new designs and processes, and less time collecting vital properties data. This is not a theoretical treatise, but an aid to the practicing engineer in the field, on day-to-day operations and long range projects. - Simplifies research and significantly reduces the amount of time spent collecting properties data - Compiled by an expert in the field, the book provides an engineer with data they can trust in design, research, development and manufacturing - A single, easy reference for critical temperature dependent properties for a wide range of hydrocarbons, including C1 to ClOO organics and Ac to Zr inorganics
This book provides numerical data on physical and thermodynamic properties of a large number of elements and compounds. SI units are used throughout, and in addition, an adequate set of conversion tables is included. This volume will be a valuable source of reference for physical chemists and chemical engineers.
The continuous and ever expanding development of high-temperature tech nology involves the use of high -temperature refractory materials and one of the most important classes of these is the oxides, i.e., compounds of elements with oxygen. Oxides are the oldest refractory compounds known in technology and this is connected with their high chemical stability and abundance in nature. In addition to the use of oxides as raw materials for metallurgical processes, the refractoriness, chemical stability, and magnetic and other technically important properties of oxides have been put to use since antiquity. At the present time the importance of oxides as bases of many materials for new technology is substantial and is growing rapidly with the development of processes for the direct conversion of various forms of energy into electrical energy, the development of nuclear technOlogy, electronics, semiconductor and dielectric technOlogy, and cosmic technology, where the refractoriness and chemical stability of oxides are used in combination with their specific physical properties. Oxides are the foundation of the so-called oxygen -containing or oxygen refractory materials, which are fundamental to high-temperature tech nology. Oxides are no less important as the bases of practically all structural ma terials and rocks. A number of oxides are involved in biological processes.
An important compilation of the thermal properties of selected solids, liquids, vapors, and gases. Covers foods, metals, alloys, building materials, industrial gases, refrigerants, and much more. Includes hard-to-find data on thermal conductivities, specific heat capacities, dynamic viscosity, and properties of compounds.
Volume 2 considers the essential conditions for a model to be truly predictive. Based on their assessments the authors predict values for the thermophysical properties of elemental metallic liquids.