Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
Recommended, by Choice Current Reviews for Academic Libraries,. Covering a broad spectrum of chemical technology, from the gigantic Bessemer process for making steel to the microscopic Manasevit process for applying circuits to silicon chips, the Encyclopedic Dictionary of Named Processes in Chemical Technology, Third Edition
In addition to enabling a clean and energy efficient future, alternative fuel sources are fast becoming a necessity for meeting today's growing demands for low-cost and convenient energy. The Handbook of Alternative Fuel Technologies offers a thorough guide to the science and available technologies for developing alternatives to petroleum fuel sour
While strides are being made in the research and development of environmentally acceptable and more sustainable alternative fuels—including efforts to reduce emissions of air pollutants associated with combustion processes from electric power generation and vehicular transportation—fossil fuel resources are limited and may soon be on the verge of depletion in the near future. Measuring the correlation between quality of life, energy consumption, and the efficient utilization of energy, the Handbook of Alternative Fuel Technologies, Second Edition thoroughly examines the science and technology of alternative fuels and their processing technologies. It focuses specifically on environmental, technoeconomic, and socioeconomic issues associated with the use of alternative energy sources, such as sustainability, applicable technologies, modes of utilization, and impacts on society. Written with research and development scientists and engineers in mind, the material in this handbook provides a detailed description and an assessment of available and feasible technologies, environmental health and safety issues, governmental regulations, and issues and agendas for R&D. It also includes alternative energy networks for production, distribution, and consumption. What’s New in This Edition: Contains several new chapters of emerging interest and updates various chapters throughout Includes coverage of coal gasification and liquefaction, hydrogen technology and safety, shale fuel by hydraulic fracturing, ethanol from lignocellulosics, biodiesel, algae fuels, and energy from waste products Covers statistics, current concerns, and future trends A single-volume complete reference, the Handbook of Alternative Fuel Technologies, Second Edition contains relevant information on chemistry, technology, and novel approaches, as well as scientific foundations for further enhancements and breakthroughs. In addition to its purposes as a handbook for practicing scientists and engineers, it can also be used as a textbook or as a reference book on fuel science and engineering, energy and environment, chemical process design, and energy and environmental policy.
This book provides an excellent overview of current technologies for the gasification of coal, oil, gas, biomass and waste feedstocks. Starting from the basic theory, it reviews the potential feedstocks and their suitability for different types of gasification process. Commercial and near-commercial processes are described individually and various features discussed in detail. There is a comprehensive review of contaminants in synthesis gas as well as of gas treating processes. One chapter is devoted to discussions of various chemical, fuel and power applications for gasification. Economic, environmental and safety issues of gasification are also covered. Both authors have been involved with gasification for over 30 years, gaining in the process a fund of practical insight and experience, which is evident throughout the book.* Addresses practical issues such as selection of the best equipment. * Ideal reference for anyone involved in operating or designing a gasification plant.* Written in an easy-to-understand format with worked examples and a comprehensive glossary and bibliography.
The first edition of the Encyclopedia of Complexity and Systems Science (ECSS, 2009) presented a comprehensive overview of granular computing (GrC) broadly divided into several categories: Granular computing from rough set theory, Granular Computing in Database Theory, Granular Computing in Social Networks, Granular Computing and Fuzzy Set Theory, Grid/Cloud Computing, as well as general issues in granular computing. In 2011, the formal theory of GrC was established, providing an adequate infrastructure to support revolutionary new approaches to computer/data science, including the challenges presented by so-called big data. For this volume of ECSS, Second Edition, many entries have been updated to capture these new developments, together with new chapters on such topics as data clustering, outliers in data mining, qualitative fuzzy sets, and information flow analysis for security applications. Granulations can be seen as a natural and ancient methodology deeply rooted in the human mind. Many daily "things" are routinely granulated into sub "things": The topography of earth is granulated into hills, plateaus, etc., space and time are granulated into infinitesimal granules, and a circle is granulated into polygons of infinitesimal sides. Such granules led to the invention of calculus, topology and non-standard analysis. Formalization of general granulation was difficult but, as shown in this volume, great progress has been made in combing discrete and continuous mathematics under one roof for a broad range of applications in data science.
Aimed at students, lecturers, researchers, and policy makers, this work describes current developments and points the way forward for new developments regarding materials in our society and how they relate to sustainability.
This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-Linear Schrödinger (NLS), Korteweg-de-Vries Burger’s (KdVB), etc. Different linear mathematical methods can be used to solve these models analytically, such as the Inverse Scattering Transformation (IST), Adomian Decomposition Method, Variational Iteration Method (VIM), Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM). Other non-analytic methods use the computational techniques available in such popular mathematical packages as Mathematica, Maple, and MATLAB. The main purpose of this volume is to provide physicists, engineers, and their students with the proper methods and tools to solve the soliton equations, and to discover the new possibilities of using solitons in multi-disciplinary areas ranging from telecommunications to biology, cosmology, and oceanographic studies.
The need for cleaner, sustainable energy continues to drive engineering research, development, and capital projects. Recent advances in combustion science and technology, including sophisticated diagnostic and control equipment, have enabled engineers to improve fuel processes and systems and reduce the damaging effects of fuels on the environment.