An Indispensable Roadmap for Nucleic Acid Preparation Although Friedrich Miescher described the first isolation of nucleic acid in 1869, it was not until 1953 that James Watson and Francis Crick successfully deciphered the structural basis of DNA duplex. Needless to say, in the years since, enormous advances have been made in the study of nucleic a
A comprehensive treasury of all the key molecular biology methods-ranging from DNA extraction to gene localization in situ-needed to function effectively in the modern laboratory. Each of the 120 highly successful techniques follows the format of the much acclaimed Methods in Molecular BiologyOao series, providing an introduction to the scientific basis of each technique, a complete listing of all the necessary materials and reagents, and clear step-by-step instruction to permit error-free execution. Included for each technique are notes about pitfalls to avoid, troubleshooting tips, alternate methods, and explanations of the reasons for certain steps-all key elements contributing significantly to success or failure in the lab. The Nucleic Acid Protocols Handbook constitutes today's most comprehensive collection of all the key classic and cutting-edge techniques for the successful isolation, analysis, and manipulation of nucleic acids by both experienced researchers and those new to the field."
Clinical microbiologists are engaged in the field of diagnostic microbiology to determine whether pathogenic microorganisms are present in clinical specimens collected from patients with suspected infections. If microorganisms are found, these are identified and susceptibility profiles, when indicated, are determined. During the past two decades, technical advances in the field of diagnostic microbiology have made constant and enormous progress in various areas, including bacteriology, mycology, mycobacteriology, parasitology, and virology. The diagnostic capabilities of modern clinical microbiology laboratories have improved rapidly and have expanded greatly due to a technological revolution in molecular aspects of microbiology and immunology. In particular, rapid techniques for nucleic acid amplification and characterization combined with automation and user-friendly software have significantly broadened the diagnostic arsenal for the clinical microbiologist. The conventional diagnostic model for clinical microbiology has been labor-intensive and frequently required days to weeks before test results were available. Moreover, due to the complexity and length of such testing, this service was usually directed at the hospitalized patient population. The physical structure of laboratories, staffing patterns, workflow, and turnaround time all have been influenced profoundly by these technical advances. Such changes will undoubtedly continue and lead the field of diagnostic microbiology inevitably to a truly modern discipline. Advanced Techniques in Diagnostic Microbiology provides a comprehensive and up-to-date description of advanced methods that have evolved for the diagnosis of infectious diseases in the routine clinical microbiology laboratory. The book is divided into two sections. The first techniques section covers the principles and characteristics of techniques ranging from rapid antigen testing, to advanced antibody detection, to in vitro nucleic acid amplification techniques, and to nucleic acid microarray and mass spectrometry. Sufficient space is assigned to cover different nucleic acid amplification formats that are currently being used widely in the diagnostic microbiology field. Within each technique, examples are given regarding its application in the diagnostic field. Commercial product information, if available, is introduced with commentary in each chapter. If several test formats are available for a technique, objective comparisons are given to illustrate the contrasts of their advantages and disadvantages. The second applications section provides practical examples of application of these advanced techniques in several "hot" spots in the diagnostic field. A diverse team of authors presents authoritative and comprehensive information on sequence-based bacterial identification, blood and blood product screening, molecular diagnosis of sexually transmitted diseases, advances in mycobacterial diagnosis, novel and rapid emerging microorganism detection and genotyping, and future directions in the diagnostic microbiology field. We hope our readers like this technique-based approach and your feedback is highly appreciated. We want to thank the authors who devoted their time and efforts to produce their chapters. We also thank the staff at Springer Press, especially Melissa Ramondetta, who initiated the whole project. Finally, we greatly appreciate the constant encouragement of our family members through this long effort. Without their unwavering faith and full support, we would never have had the courage to commence this project.
Handbook of Biomolecules: Fundamentals, Properties and Applications is a comprehensive resource covering new developments in biomolecules and biomaterials and their industrial applications in the fields of bioengineering, biomedical engineering, biotechnology, biochemistry, and their detection methods using biosensors. This book covers the fundamentals of biomolecules, their roll in living organism, structure, sources, important characteristics, and the industrial applications of these biomaterials. Sections explore amino acids, carbohydrates, nucleic acids, proteins, lipids, metabolites and natural products, then go on to discuss purification techniques and detection methods. Applications in biomolecular engineering, biochemistry and biomedical engineering, among others, are discussed before concluding with coverage of biomolecules as anticorrosion materials. - Provides the chronological advancement of biomolecules, their biochemical reaction, and many modern industrial applications in engineering and science - Serves as a valuable source for researchers interested in the fundamentals, basics and modern applications of biomolecules - Covers both synthetic and natural biomolecule synthesis and purification processes and their modern applications - Bridges the gap between the fundamental science of biomolecular chemistry and the relevant technology and industrial applications
Since the publication of the best-selling Handbook of Molecular and Cellular Methods in Biology and Medicine, the field of biology has experienced several milestones. Genome sequencing of higher eukaryotes has progressed at an unprecedented speed. Starting with baker's yeast (Saccharomyces cerevisiae), organisms sequenced now include human (Homo sa
Now in its fifth edition, the book has been updated to include more detailed descriptions of new or more commonly used techniques since the last edition as well as remove those that are no longer used, procedures which have been developed recently, ionization constants (pKa values) and also more detail about the trivial names of compounds.In addition to having two general chapters on purification procedures, this book provides details of the physical properties and purification procedures, taken from literature, of a very extensive number of organic, inorganic and biochemical compounds which are commercially available. This is the only complete source that covers the purification of laboratory chemicals that are commercially available in this manner and format.* Complete update of this valuable, well-known reference* Provides purification procedures of commercially available chemicals and biochemicals* Includes an extremely useful compilation of ionisation constants
An Indispensable Roadmap for Nucleic Acid Preparation Although Friedrich Miescher described the first isolation of nucleic acid in 1869, it was not until 1953 that James Watson and Francis Crick successfully deciphered the structural basis of DNA duplex. Needless to say, in the years since, enormous advances have been made in the study of nucleic acids, and these have become a cornerstone for all branches of modern biological sciences. The Handbook of Nucleic Acid Purification provides researchers and students with an all-encompassing volume on nucleic acid extraction strategies. Due to the complexities within prokaryotic and eukaryotic cells, purification of the nucleic acids often forms a vital first step in the study of molecular biology of living organisms as well as in the evolutionary/phylogenetic analysis of ancient specimens. Bringing together contributions from leading researchers, the handbook presents a comprehensive catalog of nucleic acid isolation methods. It includes dedicated sections on strategies for viruses, bacteria, fungi, parasites, insects, mammals, and plants, as well as for ancient samples, with an additional emphasis on sample preparation methods for direct molecular applications. Each chapter in this handbook: Explores the biological background important to understanding specific organisms and specimens Reviews principles and current techniques for efficient isolation Discusses challenges and future trends relating to improved recovery of nucleic acids Besides providing an updated, reliable reference for anyone with an interest in molecular biology, this book offers a practical guide for clinical, forensic, and research scientists involved in molecular analysis of biological specimens. It also constitutes a convenient resource for students in other areas of biological sciences, and an indispensable roadmap for both new and experienced researchers wishing to acquire or sharpen their skills in nucleic acid preparation.
This is an introductory text and laboratory manual to be used primarily in undergraduate courses. It is also useful for graduate students and research scientists who require an introduction to the theory and methods of nanopore sequencing. The book has clear explanations of the principles of this emerging technology, together with instructional material written by experts that describes how to use a MinION nanopore instrument for sequencing in research or the classroom.At Harvard University the book serves as a textbook and lab manual for a university laboratory course designed to intensify the intellectual experience of incoming undergraduates while exploring biology as a field of concentration. Nanopore sequencing is an ideal topic as a path to encourage students about the range of courses they will take in Biology by pre-emptively addressing the complaint about having to take a course in Physics or Maths while majoring in Biology. The book addresses this complaint by concretely demonstrating the range of topics — from electricity to biochemistry, protein structure, molecular engineering, and informatics — that a student will have to master in subsequent courses if he or she is to become a scientist who truly understands what his or her biology instrument is measuring when investigating biological phenomena.