Handbook of Memetic Algorithms

Handbook of Memetic Algorithms

Author: Ferrante Neri

Publisher: Springer Science & Business Media

Published: 2011-10-18

Total Pages: 376

ISBN-13: 3642232469

DOWNLOAD EBOOK

Memetic Algorithms (MAs) are computational intelligence structures combining multiple and various operators in order to address optimization problems. The combination and interaction amongst operators evolves and promotes the diffusion of the most successful units and generates an algorithmic behavior which can handle complex objective functions and hard fitness landscapes. “Handbook of Memetic Algorithms” organizes, in a structured way, all the the most important results in the field of MAs since their earliest definition until now. A broad review including various algorithmic solutions as well as successful applications is included in this book. Each class of optimization problems, such as constrained optimization, multi-objective optimization, continuous vs combinatorial problems, uncertainties, are analysed separately and, for each problem, memetic recipes for tackling the difficulties are given with some successful examples. Although this book contains chapters written by multiple authors, a great attention has been given by the editors to make it a compact and smooth work which covers all the main areas of computational intelligence optimization. It is not only a necessary read for researchers working in the research area, but also a useful handbook for practitioners and engineers who need to address real-world optimization problems. In addition, the book structure makes it an interesting work also for graduate students and researchers is related fields of mathematics and computer science.


Recent Advances in Memetic Algorithms

Recent Advances in Memetic Algorithms

Author: William E. Hart

Publisher: Springer

Published: 2006-06-22

Total Pages: 406

ISBN-13: 3540323635

DOWNLOAD EBOOK

Memetic algorithms are evolutionary algorithms that apply a local search process to refine solutions to hard problems. Memetic algorithms are the subject of intense scientific research and have been successfully applied to a multitude of real-world problems ranging from the construction of optimal university exam timetables, to the prediction of protein structures and the optimal design of space-craft trajectories. This monograph presents a rich state-of-the-art gallery of works on memetic algorithms. Recent Advances in Memetic Algorithms is the first book that focuses on this technology as the central topical matter. This book gives a coherent, integrated view on both good practice examples and new trends including a concise and self-contained introduction to memetic algorithms. It is a necessary read for postgraduate students and researchers interested in recent advances in search and optimization technologies based on memetic algorithms, but can also be used as complement to undergraduate textbooks on artificial intelligence.


Handbook of Metaheuristics

Handbook of Metaheuristics

Author: Michel Gendreau

Publisher: Springer

Published: 2018-09-20

Total Pages: 611

ISBN-13: 3319910868

DOWNLOAD EBOOK

The third edition of this handbook is designed to provide a broad coverage of the concepts, implementations, and applications in metaheuristics. The book’s chapters serve as stand-alone presentations giving both the necessary underpinnings as well as practical guides for implementation. The nature of metaheuristics invites an analyst to modify basic methods in response to problem characteristics, past experiences, and personal preferences, and the chapters in this handbook are designed to facilitate this process as well. This new edition has been fully revised and features new chapters on swarm intelligence and automated design of metaheuristics from flexible algorithm frameworks. The authors who have contributed to this volume represent leading figures from the metaheuristic community and are responsible for pioneering contributions to the fields they write about. Their collective work has significantly enriched the field of optimization in general and combinatorial optimization in particular.Metaheuristics are solution methods that orchestrate an interaction between local improvement procedures and higher level strategies to create a process capable of escaping from local optima and performing a robust search of a solution space. In addition, many new and exciting developments and extensions have been observed in the last few years. Hybrids of metaheuristics with other optimization techniques, like branch-and-bound, mathematical programming or constraint programming are also increasingly popular. On the front of applications, metaheuristics are now used to find high-quality solutions to an ever-growing number of complex, ill-defined real-world problems, in particular combinatorial ones. This handbook should continue to be a great reference for researchers, graduate students, as well as practitioners interested in metaheuristics.


Handbook of Heuristics

Handbook of Heuristics

Author: Rafael Martí

Publisher: Springer

Published: 2017-01-16

Total Pages: 3000

ISBN-13: 9783319071237

DOWNLOAD EBOOK

Heuristics are strategies using readily accessible, loosely applicable information to control problem solving. Algorithms, for example, are a type of heuristic. By contrast, Metaheuristics are methods used to design Heuristics and may coordinate the usage of several Heuristics toward the formulation of a single method. GRASP (Greedy Randomized Adaptive Search Procedures) is an example of a Metaheuristic. To the layman, heuristics may be thought of as ‘rules of thumb’ but despite its imprecision, heuristics is a very rich field that refers to experience-based techniques for problem-solving, learning, and discovery. Any given solution/heuristic is not guaranteed to be optimal but heuristic methodologies are used to speed up the process of finding satisfactory solutions where optimal solutions are impractical. The introduction to this Handbook provides an overview of the history of Heuristics along with main issues regarding the methodologies covered. This is followed by Chapters containing various examples of local searches, search strategies and Metaheuristics, leading to an analyses of Heuristics and search algorithms. The reference concludes with numerous illustrations of the highly applicable nature and implementation of Heuristics in our daily life. Each chapter of this work includes an abstract/introduction with a short description of the methodology. Key words are also necessary as part of top-matter to each chapter to enable maximum search engine optimization. Next, chapters will include discussion of the adaptation of this methodology to solve a difficult optimization problem, and experiments on a set of representative problems.


Handbook of Metaheuristics

Handbook of Metaheuristics

Author: Fred W. Glover

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 560

ISBN-13: 0306480565

DOWNLOAD EBOOK

This book provides both the research and practitioner communities with a comprehensive coverage of the metaheuristic methodologies that have proven to be successful in a wide variety of real-world problem settings. Moreover, it is these metaheuristic strategies that hold particular promise for success in the future. The various chapters serve as stand alone presentations giving both the necessary background underpinnings as well as practical guides for implementation.


Handbook of Approximation Algorithms and Metaheuristics

Handbook of Approximation Algorithms and Metaheuristics

Author: Teofilo F. Gonzalez

Publisher: CRC Press

Published: 2018-05-15

Total Pages: 840

ISBN-13: 1351236407

DOWNLOAD EBOOK

Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.


Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms

Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms

Author: Dash, Sujata

Publisher: IGI Global

Published: 2017-08-10

Total Pages: 567

ISBN-13: 152252858X

DOWNLOAD EBOOK

The digital age is ripe with emerging advances and applications in technological innovations. Mimicking the structure of complex systems in nature can provide new ideas on how to organize mechanical and personal systems. The Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms is an essential scholarly resource on current algorithms that have been inspired by the natural world. Featuring coverage on diverse topics such as cellular automata, simulated annealing, genetic programming, and differential evolution, this reference publication is ideal for scientists, biological engineers, academics, students, and researchers that are interested in discovering what models from nature influence the current technology-centric world.


Introduction to Evolutionary Computing

Introduction to Evolutionary Computing

Author: A.E. Eiben

Publisher: Springer Science & Business Media

Published: 2007-08-06

Total Pages: 328

ISBN-13: 9783540401841

DOWNLOAD EBOOK

The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.


Clever Algorithms

Clever Algorithms

Author: Jason Brownlee

Publisher: Jason Brownlee

Published: 2011

Total Pages: 437

ISBN-13: 1446785068

DOWNLOAD EBOOK

This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language.


Handbook of Research on Artificial Intelligence Techniques and Algorithms

Handbook of Research on Artificial Intelligence Techniques and Algorithms

Author: Vasant, Pandian

Publisher: IGI Global

Published: 2014-11-30

Total Pages: 913

ISBN-13: 1466672595

DOWNLOAD EBOOK

For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.