With 300 figures, tables, and equations, this book presents a unified approach to image quality research and modeling. The author discusses the results of different, calibrated psychometric experiments can be rigorously integrated to construct predictive software using Monte Carlo simulations and provides numerous examples of viable field applications for product design and verification of modeling predictions. He covers perceptual measurements for the assessment of individual quality attributes and overall quality, explores variation in scene susceptibility, observer sensitivity, and preference, and includes methods of analysis for testing and refining metrics based on psychometric data.
Image techniques have been developed and implemented for various purposes, and image engineering (IE) is a rapidly evolving, integrated discipline comprising the study of all the different branches of image techniques, and encompassing mathematics, physics, biology, physiology, psychology, electrical engineering, computer science and automation. Advances in the field are also closely related to the development of telecommunications, biomedical engineering, remote sensing, surveying and mapping, as well as document processing and industrial applications. IE involves three related and partially overlapping groups of image techniques: image processing (IP) (in its narrow sense), image analysis (IA) and image understanding (IU), and the integration of these three groups makes the discipline of image engineering an important part of the modern information era. This is the first handbook on image engineering, and provides a well-structured, comprehensive overview of this new discipline. It also offers detailed information on the various image techniques. It is a valuable reference resource for R&D professional and undergraduate students involved in image-related activities.
Now in its fifth edition, John C. Russ‘s monumental image processing reference is an even more complete, modern, and hands-on tool than ever before. The Image Processing Handbook, Fifth Edition is fully updated and expanded to reflect the latest developments in the field. Written by an expert with unequalled experience and authority, it offers clea
In recent years, the remarkable advances in medical imaging instruments have increased their use considerably for diagnostics as well as planning and follow-up of treatment. Emerging from the fields of radiology, medical physics and engineering, medical imaging no longer simply deals with the technology and interpretation of radiographic images. The limitless possibilities presented by computer science and technology, coupled with engineering advances in signal processing, optics and nuclear medicine have created the vastly expanded field of medical imaging. The Handbook of Medical Imaging is the first comprehensive compilation of the concepts and techniques used to analyze and manipulate medical images after they have been generated or digitized. The Handbook is organized in six sections that relate to the main functions needed for processing: enhancement, segmentation, quantification, registration, visualization as well as compression storage and telemedicine. * Internationally renowned authors(Johns Hopkins, Harvard, UCLA, Yale, Columbia, UCSF) * Includes imaging and visualization * Contains over 60 pages of stunning, four-color images
55% new material in the latest edition of this "must-have for students and practitioners of image & video processing!This Handbook is intended to serve as the basic reference point on image and video processing, in the field, in the research laboratory, and in the classroom. Each chapter has been written by carefully selected, distinguished experts specializing in that topic and carefully reviewed by the Editor, Al Bovik, ensuring that the greatest depth of understanding be communicated to the reader. Coverage includes introductory, intermediate and advanced topics and as such, this book serves equally well as classroom textbook as reference resource. • Provides practicing engineers and students with a highly accessible resource for learning and using image/video processing theory and algorithms • Includes a new chapter on image processing education, which should prove invaluable for those developing or modifying their curricula • Covers the various image and video processing standards that exist and are emerging, driving today's explosive industry • Offers an understanding of what images are, how they are modeled, and gives an introduction to how they are perceived • Introduces the necessary, practical background to allow engineering students to acquire and process their own digital image or video data • Culminates with a diverse set of applications chapters, covered in sufficient depth to serve as extensible models to the reader's own potential applications About the Editor... Al Bovik is the Cullen Trust for Higher Education Endowed Professor at The University of Texas at Austin, where he is the Director of the Laboratory for Image and Video Engineering (LIVE). He has published over 400 technical articles in the general area of image and video processing and holds two U.S. patents. Dr. Bovik was Distinguished Lecturer of the IEEE Signal Processing Society (2000), received the IEEE Signal Processing Society Meritorious Service Award (1998), the IEEE Third Millennium Medal (2000), and twice was a two-time Honorable Mention winner of the international Pattern Recognition Society Award. He is a Fellow of the IEEE, was Editor-in-Chief, of the IEEE Transactions on Image Processing (1996-2002), has served on and continues to serve on many other professional boards and panels, and was the Founding General Chairman of the IEEE International Conference on Image Processing which was held in Austin, Texas in 1994.* No other resource for image and video processing contains the same breadth of up-to-date coverage* Each chapter written by one or several of the top experts working in that area* Includes all essential mathematics, techniques, and algorithms for every type of image and video processing used by electrical engineers, computer scientists, internet developers, bioengineers, and scientists in various, image-intensive disciplines
Image processing is fast becoming a valuable tool for analyzing multidimensional data in all areas of natural science. Since the publication of the best-selling first edition of this handbook, the field of image processing has matured in many of its aspects from ad hoc, empirical approaches to a sound science based on established mathematical and p
This book is aimed at those using colour image processing or researching new applications or techniques of colour image processing. It has been clear for some time that there is a need for a text dedicated to colour. We foresee a great increase in the use of colour over the coming years, both in research and in industrial and commercial applications. We are sure this book will prove a useful reference text on the subject for practicing engineers and scientists, for researchers, and for students at doctoral and, perhaps masters, level. It is not intended as an introductory text on image processing, rather it assumes that the reader is already familiar with basic image processing concepts such as image representation in digital form, linear and non-linear filtering, trans forms, edge detection and segmentation, and so on, and has some experience with using, at the least, monochrome equipment. There are many books cov ering these topics and some of them are referenced in the text, where appro priate. The book covers a restricted, but nevertheless, a very important, subset of image processing concerned with natural colour (that is colour as per ceived by the human visual system). This is an important field because it shares much technology and basic theory with colour television and video equipment, the market for which is worldwide and very large; and with the growing field of multimedia, including the use of colour images on the Inter net.
Containing chapter contributions from over 130 experts, this unique publication is the first handbook dedicated to the physics and technology of X-ray imaging, offering extensive coverage of the field. This highly comprehensive work is edited by one of the world’s leading experts in X-ray imaging physics and technology and has been created with guidance from a Scientific Board containing respected and renowned scientists from around the world. The book's scope includes 2D and 3D X-ray imaging techniques from soft-X-ray to megavoltage energies, including computed tomography, fluoroscopy, dental imaging and small animal imaging, with several chapters dedicated to breast imaging techniques. 2D and 3D industrial imaging is incorporated, including imaging of artworks. Specific attention is dedicated to techniques of phase contrast X-ray imaging. The approach undertaken is one that illustrates the theory as well as the techniques and the devices routinely used in the various fields. Computational aspects are fully covered, including 3D reconstruction algorithms, hard/software phantoms, and computer-aided diagnosis. Theories of image quality are fully illustrated. Historical, radioprotection, radiation dosimetry, quality assurance and educational aspects are also covered. This handbook will be suitable for a very broad audience, including graduate students in medical physics and biomedical engineering; medical physics residents; radiographers; physicists and engineers in the field of imaging and non-destructive industrial testing using X-rays; and scientists interested in understanding and using X-ray imaging techniques. The handbook's editor, Dr. Paolo Russo, has over 30 years’ experience in the academic teaching of medical physics and X-ray imaging research. He has authored several book chapters in the field of X-ray imaging, is Editor-in-Chief of an international scientific journal in medical physics, and has responsibilities in the publication committees of international scientific organizations in medical physics. Features: Comprehensive coverage of the use of X-rays both in medical radiology and industrial testing The first handbook published to be dedicated to the physics and technology of X-rays Handbook edited by world authority, with contributions from experts in each field
This book focuses on image based security techniques, namely visual cryptography, watermarking, and steganography. This book is divided into four sections. The first section explores basic to advanced concepts of visual cryptography. The second section of the book covers digital image watermarking including watermarking algorithms, frameworks for modeling watermarking systems, and the evaluation of watermarking techniques. The next section analyzes steganography and steganalysis, including the notion, terminology and building blocks of steganographic communication. The final section of the book describes the concept of hybrid approaches which includes all image-based security techniques. One can also explore various advanced research domains related to the multimedia security field in the final section. The book includes many examples and applications, as well as implementation using MATLAB, wherever required. Features: Provides a comprehensive introduction to visual cryptography, digital watermarking and steganography in one book Includes real-life examples and applications throughout Covers theoretical and practical concepts related to security of other multimedia objects using image based security techniques Presents the implementation of all important concepts in MATLAB
Handbook of Robotic and Image-Guided Surgery provides state-of-the-art systems and methods for robotic and computer-assisted surgeries. In this masterpiece, contributions of 169 researchers from 19 countries have been gathered to provide 38 chapters. This handbook is 744 pages, includes 659 figures and 61 videos. It also provides basic medical knowledge for engineers and basic engineering principles for surgeons. A key strength of this text is the fusion of engineering, radiology, and surgical principles into one book. - A thorough and in-depth handbook on surgical robotics and image-guided surgery which includes both fundamentals and advances in the field - A comprehensive reference on robot-assisted laparoscopic, orthopedic, and head-and-neck surgeries - Chapters are contributed by worldwide experts from both engineering and surgical backgrounds