This book contains the most- used methods of powder preparation and manufacture of articles, data on the explosibility, flammability and toxicity of refractory-compound powders. Topics include the properties of borides, carbides, nitrides, silicides, sulphides, selenides, and tellurides.
This handbook presents the thermodynamic functions obtained primarily from the results of equilibrium studies of isomerization reactions and by measurements of the heats of combustion of isomer groups by the calorimetric method.
The first comprehensive book to focus on ultra-high temperature ceramic materials in more than 20 years Ultra-High Temperature Ceramics are a family of compounds that display an unusual combination of properties, including extremely high melting temperatures (>3000°C), high hardness, and good chemical stability and strength at high temperatures. Typical UHTC materials are the carbides, nitrides, and borides of transition metals, but the Group IV compounds (Ti, Zr, Hf) plus TaC are generally considered to be the main focus of research due to the superior melting temperatures and stable high-melting temperature oxide that forms in situ. Rather than focusing on the latest scientific results, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications broadly and critically combines the historical aspects and the state-of-the-art on the processing, densification, properties, and performance of boride and carbide ceramics. In reviewing the historic studies and recent progress in the field, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications provides: Original reviews of research conducted in the 1960s and 70s Content on electronic structure, synthesis, powder processing, densification, property measurement, and characterization of boride and carbide ceramics. Emphasis on materials for hypersonic aerospace applications such as wing leading edges and propulsion components for vehicles traveling faster than Mach 5 Information on materials used in the extreme environments associated with high speed cutting tools and nuclear power generation Contributions are based on presentations by leading research groups at the conference "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II" held May 13-19, 2012 in Hernstein, Austria. Bringing together disparate researchers from academia, government, and industry in a singular forum, the meeting cultivated didactic discussions and efforts between bench researchers, designers and engineers in assaying results in a broader context and moving the technology forward toward near- and long-term use. This book is useful for furnace manufacturers, aerospace manufacturers that may be pursuing hypersonic technology, researchers studying any aspect of boride and carbide ceramics, and practitioners of high-temperature structural ceramics.
This exhaustive work in several volumes and over 2500 pages provides a thorough treatment of ultra-high temperature materials (with melting points around or over 2500 °C). The first volume focuses on carbon (graphene/graphite) and refractory metals (W, Re, Os, Ta, Mo, Nb and Ir), whilst the second and third are dedicated to refractory transition metal 4-5 groups carbides. Topics included are physical (structural, thermal, electro-magnetic, optical, mechanical, nuclear) and chemical (more than 3000 binary, ternary and multi-component systems, including those used for materials design, data on solid-state diffusion, wettability, interaction with various elements and compounds in solid and liquid states, gases and chemicals in aqueous solutions) properties of these materials. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The readers/users are provided with the full qualitative and quantitative assessment, which is based on the latest updates in the field of fundamental physics and chemistry, nanotechnology, materials science, design and engineering.
In additional to traditional topics such as thermal insulation, instrumentation and standards, the conference highlighted research in carbon nanotubes, nanomaterials, novel thin films, thermoelectric and composites.
This volume includes the latest achievements in the area of ceramic armor systems including ceramic armor design and modeling, ceramic armor materials and composites development and manufacturing, physical properties and structures of armor ceramics, fracture mechanisms of armor ceramics and composites, and ballistic testing and performance of ceramic armor systems. Proceedings of the symposium held at the 105th Annual Meeting of The American Ceramic Society, April 27-30, 2003, in Nashville, Tennessee; Ceramic Transactions, Volume 151.
Ceramics are a versatile material, more so than is widely known. They are thermal resistant, poor electrical conductors, insulators against nuclear radiation, and not easily damaged, making ceramics a key component in many industrial processes. MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments investigates a new class of ultra-durable ceramic materials, which exhibit characteristics of both ceramics and metals. Readers will explore recent advances in the manufacturing of ceramic materials that improve their durability and other physical properties, enhancing their overall usability and cost-effectiveness. This book will be of primary use to researchers, academics, and practitioners in chemical, mechanical, and electrical engineering. This book is part of the Research Essentials collection.
A revised and updated guide to reference material. It contains selective and evaluative entries to guide the enquirer to the best source of reference in each subject area, be it journal article, CD-ROM, on-line database, bibliography, encyclopaedia, monograph or directory. It features full critical annotations and reviewers' comments and comprehensive author-title and subject indexes. The contents include: mathematics; astronomy and surveying; physics; chemistry; earth sciences; palaeontology; anthropology; biology; natural history; botany; zoology; patents and interventions; medicine; engineering; transport vehicles; agriculture and livestock; household management; communication; chemical industry; manufactures; industries, trades and crafts; and the building industry.
This book provides a basic understanding of refractories. This includes the fundamentals of refractory technology supported by phase diagrams as well as detailing the prominent applications of these essential industrial materials. This book covers all the facets of refractory technology, starting from classification, properties, standard specifications, details of the conventional shaped refractories, including relevant phase diagrams & application areas and also the details of unshaped refractories including various classifications, bonding, additives and their applications.