Initially conceived as a methodology for the representation and manipulation of imprecise and vague information, fuzzy computation has found wide use in problems that fall well beyond its originally intended scope of application. Many scientists and engineers now use the paradigms of fuzzy computation to tackle problems that are either intractable
The Springer Handbook for Computational Intelligence is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of computational intelligence. This comprehensive handbook makes readers familiar with a broad spectrum of approaches to solve various problems in science and technology. Possible approaches include, for example, those being inspired by biology, living organisms and animate systems. Content is organized in seven parts: foundations; fuzzy logic; rough sets; evolutionary computation; neural networks; swarm intelligence and hybrid computational intelligence systems. Each Part is supervised by its own Part Editor(s) so that high-quality content as well as completeness are assured.
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods
Information on integrating soft computing techniques into video surveillance is widely scattered among conference papers, journal articles, and books. Bringing this research together in one source, Handbook on Soft Computing for Video Surveillance illustrates the application of soft computing techniques to different tasks in video surveillance. Worldwide experts in the field present novel solutions to video surveillance problems and discuss future trends. After an introduction to video surveillance systems and soft computing tools, the book gives examples of neural network-based approaches for solving video surveillance tasks and describes summarization techniques for content identification. Covering a broad spectrum of video surveillance topics, the remaining chapters explain how soft computing techniques are used to detect moving objects, track objects, and classify and recognize target objects. The book also explores advanced surveillance systems under development. Incorporating both existing and new ideas, this handbook unifies the basic concepts, theories, algorithms, and applications of soft computing. It demonstrates why and how soft computing methodologies can be used in various video surveillance problems.
"This book presents the most innovative systematic and practical facets of fuzzy computing technologies to students, scholars, and academicians, as well as practitioners, engineers, and professionals"--
Using the same strategy for the needs of image processing and pattern recognition, scientists and researchers have turned to computational intelligence for better research throughputs and end results applied towards engineering, science, business and financial applications. Handbook of Research on Computational Intelligence for Engineering, Science, and Business discusses the computation intelligence approaches, initiatives and applications in the engineering, science and business fields. This reference aims to highlight computational intelligence as no longer limited to computing-related disciplines and can be applied to any effort which handles complex and meaningful information.
Although the notion is a relatively recent one, the notions and principles of Granular Computing (GrC) have appeared in a different guise in many related fields including granularity in Artificial Intelligence, interval computing, cluster analysis, quotient space theory and many others. Recent years have witnessed a renewed and expanding interest in the topic as it begins to play a key role in bioinformatics, e-commerce, machine learning, security, data mining and wireless mobile computing when it comes to the issues of effectiveness, robustness and uncertainty. The Handbook of Granular Computing offers a comprehensive reference source for the granular computing community, edited by and with contributions from leading experts in the field. Includes chapters covering the foundations of granular computing, interval analysis and fuzzy set theory; hybrid methods and models of granular computing; and applications and case studies. Divided into 5 sections: Preliminaries, Fundamentals, Methodology and Algorithms, Development of Hybrid Models and Applications and Case Studies. Presents the flow of ideas in a systematic, well-organized manner, starting with the concepts and motivation and proceeding to detailed design that materializes in specific algorithms, applications and case studies. Provides the reader with a self-contained reference that includes all pre-requisite knowledge, augmented with step-by-step explanations of more advanced concepts. The Handbook of Granular Computing represents a significant and valuable contribution to the literature and will appeal to a broad audience including researchers, students and practitioners in the fields of Computational Intelligence, pattern recognition, fuzzy sets and neural networks, system modelling, operations research and bioinformatics.
HANDBOOK OF INTELLIGENT COMPUTING AND OPTIMIZATION FOR SUSTAINABLE DEVELOPMENT This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries. Optimization has received enormous attention along with the rapidly increasing use of communication technology and the development of user-friendly software and artificial intelligence. In almost all human activities, there is a desire to deliver the highest possible results with the least amount of effort. Moreover, optimization is a very well-known area with a vast number of applications, from route finding problems to medical treatment, construction, finance, accounting, engineering, and maintenance schedules in plants. As far as optimization of real-world problems is concerned, understanding the nature of the problem and grouping it in a proper class may help the designer employ proper techniques which can solve the problem efficiently. Many intelligent optimization techniques can find optimal solutions without the use of objective function and are less prone to local conditions. The 41 chapters comprising the Handbook of Intelligent Computing and Optimization for Sustainable Development by subject specialists, represent diverse disciplines such as mathematics and computer science, electrical and electronics engineering, neuroscience and cognitive sciences, medicine, and social sciences, and provide the reader with an integrated understanding of the importance that intelligent computing has in the sustainable development of current societies. It discusses the emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative intelligent techniques in a variety of sectors, including IoT, manufacturing, optimization, and healthcare. Audience It is a pivotal reference source for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research in emerging perspectives in the field of artificial intelligence in the areas of Internet of Things, renewable energy, optimization, and smart cities.
"This book explores emerging technologies and best practices designed to effectively address concerns inherent in properly optimizing advanced systems, demonstrating applications in areas such as bio-engineering, space exploration, industrial informatics, information security, and nuclear and renewable energies"--Provided by publisher.
In this volume, first we formulate a framework of fuzzy types to represent both partial truth and uncertainty about concept and relation types in conceptual graphs. Like fuzzy attribute values, fuzzy types also form a lattice laying a common ground for lattice-based computation of fuzzy granules. Second, for automated reasoning with fuzzy conceptual graphs, we develop foundations of order-sorted fuzzy set logic programming, extending the theory of annotated logic programs of Kifer and Subrahmanian (1992). Third, we show some recent applications of fuzzy conceptual graphs to modelling and computing with generally quantified statements, approximate knowledge retrieval, and natural language query understanding.