Celebrating 100 years of HEP, this volume will discuss key pharmacological discoveries and concepts of the past 100 years. These discoveries have dramatically changed the medical treatment paradigms of many diseases and these concepts have and will continue to shape discovery of new medicinies. Newly evolving technologies will similarly be discussed as they will shape the future of the pharmacology and, accordingly, medical therapy.
This open access book, published under a CC BY 4.0 license in the Pubmed indexed book series Handbook of Experimental Pharmacology, provides up-to-date information on best practice to improve experimental design and quality of research in non-clinical pharmacology and biomedicine.
This volume aims to connect current ideas and concepts about GI disorders with the search for novel therapeutics. Towards this goal, authors provide a timely state-of-the-art overview of the GI tract in health and disease, current treatment approaches and ongoing developments in drug discovery, and their potential for the better treatment of patients with GI disorders.
Following its successful predecessor, this book covers the fundamentals, delivery routes and vehicles, and practical applications of drug delivery. In the 2nd edition, almost all chapters from the previous are retained and updated and several new chapters added to make a more complete resource and reference. • Helps readers understand progress in drug delivery research and applications • Updates and expands coverage to reflect advances in materials for delivery vehicles, drug delivery approaches, and therapeutics • Covers recent developments including transdermal and mucosal delivery, lymphatic system delivery, theranostics • Adds new chapters on nanoparticles, controlled drug release systems, theranostics, protein and peptide drugs, and biologics delivery
In the present volume of the Handbook of Experimental Pharmacology well known experts describe the actions of different xanthines with a focus on caffeine and theophylline. A special chapter is devoted to theobromine, an active component of chocolate, the actions of which are less well characterized. This book also presents the pharmacology of one xanthine derivative, propentofylline, as an example of a xanthine that has gone through extensive development for a novel therapeutic area.
The present book is an outstanding summary of many aspects of cannabinoid research. It provides current knowledge about the pharmacology and therapeutic potential of cannabinoids as well as knowledge about the pharmacology, physiology, and pathology of the endogenous cannabinoid systems. The chapters are written by scientists who have made or are still making major contributions to the field. This book may well help generate novel ideas on how to approach the study of emotions.
This book provides the current state of knowledge of basic mechanisms of adverse drug reactions (ADRs). The main focus is on idiosyncratic drug reactions because they are the most difficult to deal with. It starts with a general description of the major targets for ADRs followed by a description of what are presently believed to be mediators and biochemical pathways involved in idiosyncratic drug reactions. There is also a description of several examples of ADRs that serve to illustrate specific aspects of ADR mechanisms. Eventually the book shows that ultimately better methods are needed to predict which drug candidates are likely to cause ADRs and which patients are at increased risk. But at present research seems to be far from this goal.
Muscarinic acetylcholine receptors have played a key role in the advancement of knowledge of pharmacology and neurotransmission since the inception of studies in these fields, and the effects of naturally occurring drugs acting on muscarinic receptors were known and exploited for both therapeutic and non-therapeutic purposes for hundreds of years before the existence of the receptors themselves was recognized. This volume presents a broad yet detailed review of current knowledge of muscarinic receptors that will be valuable both to long-time muscarinic investigators and to those new to the field. It describes the detailed insights that have been obtained on the structure, function, and cell biology of muscarinic receptors. This volume also describes physiological analyses of muscarinic receptors and their roles in regulating the function of the brain and of a variety of peripheral tissues. This volume shows how the study of muscarinic receptors continues to provide new and surprising insights not just to the cholinergic system but to the broad areas of neurobiology, cell biology, pharmacology, and therapeutics.
Some important constraints of anesthesia must be taken into consideration when the pharmacological properties of modern anesthetics are discussed. The most imp- tant of these could be that the target effect be achieved preferably within seconds, at most within a few minutes. Similarly, offset of drug action should be achieved within minutes rather hours. The target effects, such as unconsciousness, are pot- tially life-threatening, as are the side effects of modern anesthetics, such as respi- tory and cardiovascular depression. Finally, the patient’s purposeful responses are not available to guide drug dosage, because, either the patient is unconscious, or more problematically, the patient is aware but unable to communicate pain because of neuromuscular blockade. These constraints were already recognised 35 years ago, when in 1972 Volume XXX entitled “Modern Inhalation Anesthetics” appeared in this Handbook Series. The present volume is meant as a follow up and extension of that volume. At the beginning of the 1970’s anesthesia was commonly delivered by inhalation, with only very few exceptions. The clinical understanding of that time considered anesthesia as a unique state achieved by any of the inhalation anesthetics, in- pendent of their specific molecular structure. “The very mechanism of anesthetic action at the biophase” was discussed within the theoretical framework of the “u- tary theory of narcosis”.