This book is a comprehensive work covering all the relevant aspects of electrical distribution engineering essential for a practising engineer. The contents, culled from scattered sources like technical books, codes, pamphlets, manufacturers' specifications, and handbooks of State Electricity Boards, Electrical Inspectorates, Bureau of Standards, etc.....
Of the "big three" components of electrical infrastructure, distribution typically gets the least attention. In fact, a thorough, up-to-date treatment of the subject hasn’t been published in years, yet deregulation and technical changes have increased the need for better information. Filling this void, the Electric Power Distribution Handbook delivers comprehensive, cutting-edge coverage of the electrical aspects of power distribution systems. The first few chapters of this pragmatic guidebook focus on equipment-oriented information and applications such as choosing transformer connections, sizing and placing capacitors, and setting regulators. The middle portion discusses reliability and power quality, while the end tackles lightning protection, grounding, and safety. The Second Edition of this CHOICE Award winner features: 1 new chapter on overhead line performance and 14 fully revised chapters incorporating updates from several EPRI projects New sections on voltage optimization, arc flash, and contact voltage Full-color illustrations throughout, plus fresh bibliographic references, tables, graphs, methods, and statistics Updates on conductor burndown, fault location, reliability programs, tree contacts, automation, and grounding and personnel protection Access to an author-maintained support website, distributionhandbook.com, with problems sets, resources, and online apps An unparalleled source of tips and solutions for improving performance, the Electric Power Distribution Handbook, Second Edition provides power and utility engineers with the technical information and practical tools they need to understand the applied science of distribution.
Power distribution and quality remain the key challenges facing the electric utilities industry. Choosing the right equipment and architecture for a given application means the difference between success and failure. Comprising chapters carefully selected from the best-selling Electric Power Distribution Handbook, Electric Power Distribution Equipment and Systems provides an economical, sharply focused reference on the technologies and infrastructures that enable reliable, efficient distribution of power, from traversing vast distances to local power delivery. The book works inward from broad coverage of overall power systems all the way down to specific equipment application. It begins by laying a foundation in the fundamentals of distribution systems, explaining configurations, substations, loads, and differences between European and US systems. It also includes a look at the development of the field as well as future problems and challenges to overcome. Building on this groundwork, the author elaborates on both overhead and underground distribution networks, including the underlying concepts and practical issues associated with each. Probing deeper into the system, individual chapters explore transformers, voltage regulation, and capacitor application in detail, from basic principles to operational considerations. With clear explanations and detailed information, Electric Power Distribution Equipment and Systems gathers critical concepts, technologies, and applications into a single source that is ideally suited for immediate implementation.
Details the full spectrum of the equipment and processes used in the production of electricity, from the basics of energy conversion, to prime movers, generators, and boilers. The Second Edition expands coverage of the gasification of coal, gas turbines, and the effective use of generation in place of efficiency measures.
This handbook gathers state-of-the-art research on optimization problems in power distribution systems, covering classical problems as well as the challenges introduced by distributed power generation and smart grid resources. It also presents recent models, solution techniques and computational tools to solve planning problems for power distribution systems and explains how to apply them in distributed and variable energy generation resources. As such, the book therefore is a valuable tool to leverage the expansion and operation planning of electricity distribution networks.
A bestselling calculations handbook that offers electric power engineers and technicians essential, step-by-step procedures for solving a wide array of electric power problems. This edition introduces a complete electronic book on CD-ROM with over 100 live calculations--90% of the book's calculations. Updated to reflect the new National Electric Code advances in transformer and motors; and the new system design and operating procedures in the electric utility industry prompted by deregulation.
A comprehensive review of the theory and practice for designing, operating, and optimizing electric distribution systems, revised and updated Now in its second edition, Electric Distribution Systems has been revised and updated and continues to provide a two-tiered approach for designing, installing, and managing effective and efficient electric distribution systems. With an emphasis on both the practical and theoretical approaches, the text is a guide to the underlying theory and concepts and provides a resource for applying that knowledge to problem solving. The authors—noted experts in the field—explain the analytical tools and techniques essential for designing and operating electric distribution systems. In addition, the authors reinforce the theories and practical information presented with real-world examples as well as hundreds of clear illustrations and photos. This essential resource contains the information needed to design electric distribution systems that meet the requirements of specific loads, cities, and zones. The authors also show how to recognize and quickly respond to problems that may occur during system operations, as well as revealing how to improve the performance of electric distribution systems with effective system automation and monitoring. This updated edition: • Contains new information about recent developments in the field particularly in regard to renewable energy generation • Clarifies the perspective of various aspects relating to protection schemes and accompanying equipment • Includes illustrative descriptions of a variety of distributed energy sources and their integration with distribution systems • Explains the intermittent nature of renewable energy sources, various types of energy storage systems and the role they play to improve power quality, stability, and reliability Written for engineers in electric utilities, regulators, and consultants working with electric distribution systems planning and projects, the second edition of Electric Distribution Systems offers an updated text to both the theoretical underpinnings and practical applications of electrical distribution systems.
A quick scan of any bookstore, library, or online bookseller will produce a multitude of books covering power systems. However, few, if any, are totally devoted to power distribution engineering, and none of them are true textbooks. Filling this vacuum in the power system engineering literature, the first edition of Electric Power Distribution System Engineering broke new ground. Written in the classic, self-learning style of the first edition, this second edition contains updated coverage, new examples, and numerous examples of MATLAB applications. Designed specifically for junior- or senior-level electrical engineering courses, the author draws on his more than 31 years of experience to provide a text that is as attractive to students as it is useful to professors and practicing engineers. The book covers all aspects of distribution engineering from basic system planning and concepts through distribution system protection and reliability. The author brings to the table years of experience and, using this as a foundation, demonstrates how to design, analyze, and perform modern distribution system engineering. He takes special care to cover industry terms and symbols, providing a glossary and clearly defining each term when it is introduced. The discussion of distribution planning and design considerations goes beyond the usual analytical and qualitative analysis and emphasizes the economical explication and overall impact of the distribution design considerations discussed. See what’s new in the Second Edition: Topics such as automation of distribution systems, advanced SCADA systems, computer applications, substation grounding, lightning protection, and insulators Chapter on electric power quality New examples and MATLAB applications Substation grounding Lightning protection Insulators Expanded topics include: Load forecasting techniques High-impedance faults A detailed review of distribution reliability indices Watch Turan Gonen talk about his book at: http://youtu.be/OZBd2diBzgk
Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: Electric power generation: nonconventional methods Electric power generation: conventional methods Transmission system Distribution systems Electric power utilization Power quality L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Saifur Rahman, Rama Ramakumar, George Karady, Bill Kersting, Andrew Hanson, and Mark Halpin present substantially new and revised material, giving readers up-to-date information on core areas. These include advanced energy technologies, distributed utilities, load characterization and modeling, and power quality issues such as power system harmonics, voltage sags, and power quality monitoring. With six new and 16 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New chapters cover: Water Transmission Line Reliability Methods High Voltage Direct Current Transmission System Advanced Technology High-Temperature Conduction Distribution Short-Circuit Protection Linear Electric Motors A volume in the Electric Power Engineering Handbook, Third Edition. Other volumes in the set: K12648 Power Systems, Third Edition (ISBN: 9781439856338) K13917 Power System Stability and Control, Third Edition (ISBN: 9781439883204) K12650 Electric Power Substations Engineering, Third Edition (ISBN: 9781439856383) K12643 Electric Power Transformer Engineering, Third Edition (ISBN: 9781439856291)
This book aims to provide insights on new trends in power systems operation and control and to present, in detail, analysis methods of the power system behavior (mainly its dynamics) as well as the mathematical models for the main components of power plants and the control systems implemented in dispatch centers. Particularly, evaluation methods for rotor angle stability and voltage stability as well as control mechanism of the frequency and voltage are described. Illustrative examples and graphical representations help readers across many disciplines acquire ample knowledge on the respective subjects.