Handbook of Constructive Mathematics

Handbook of Constructive Mathematics

Author: Douglas Bridges

Publisher: Cambridge University Press

Published: 2023-03-31

Total Pages: 864

ISBN-13: 100904141X

DOWNLOAD EBOOK

Constructive mathematics – mathematics in which 'there exists' always means 'we can construct' – is enjoying a renaissance. fifty years on from Bishop's groundbreaking account of constructive analysis, constructive mathematics has spread out to touch almost all areas of mathematics and to have profound influence in theoretical computer science. This handbook gives the most complete overview of modern constructive mathematics, with contributions from leading specialists surveying the subject's myriad aspects. Major themes include: constructive algebra and geometry, constructive analysis, constructive topology, constructive logic and foundations of mathematics, and computational aspects of constructive mathematics. A series of introductory chapters provides graduate students and other newcomers to the subject with foundations for the surveys that follow. Edited by four of the most eminent experts in the field, this is an indispensable reference for constructive mathematicians and a fascinating vista of modern constructivism for the increasing number of researchers interested in constructive approaches.


Handbook of Constructive Mathematics

Handbook of Constructive Mathematics

Author: Douglas Bridges

Publisher: Cambridge University Press

Published: 2023-03-31

Total Pages: 863

ISBN-13: 1316510867

DOWNLOAD EBOOK

Gives a complete overview of modern constructive mathematics and its applications through surveys by leading experts.


A Course in Constructive Algebra

A Course in Constructive Algebra

Author: Ray Mines

Publisher: Springer Science & Business Media

Published: 2012-09-10

Total Pages: 355

ISBN-13: 1441986405

DOWNLOAD EBOOK

The constructive approach to mathematics has enjoyed a renaissance, caused in large part by the appearance of Errett Bishop's book Foundations of constr"uctiue analysis in 1967, and by the subtle influences of the proliferation of powerful computers. Bishop demonstrated that pure mathematics can be developed from a constructive point of view while maintaining a continuity with classical terminology and spirit; much more of classical mathematics was preserved than had been thought possible, and no classically false theorems resulted, as had been the case in other constructive schools such as intuitionism and Russian constructivism. The computers created a widespread awareness of the intuitive notion of an effecti ve procedure, and of computation in principle, in addi tion to stimulating the study of constructive algebra for actual implementation, and from the point of view of recursive function theory. In analysis, constructive problems arise instantly because we must start with the real numbers, and there is no finite procedure for deciding whether two given real numbers are equal or not (the real numbers are not discrete) . The main thrust of constructive mathematics was in the direction of analysis, although several mathematicians, including Kronecker and van der waerden, made important contributions to construc tive algebra. Heyting, working in intuitionistic algebra, concentrated on issues raised by considering algebraic structures over the real numbers, and so developed a handmaiden'of analysis rather than a theory of discrete algebraic structures.


Handbook of Analysis and Its Foundations

Handbook of Analysis and Its Foundations

Author: Eric Schechter

Publisher: Academic Press

Published: 1996-10-24

Total Pages: 907

ISBN-13: 0080532993

DOWNLOAD EBOOK

Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/


Proofs from THE BOOK

Proofs from THE BOOK

Author: Martin Aigner

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 194

ISBN-13: 3662223430

DOWNLOAD EBOOK

According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.


Foundations of Constructive Analysis

Foundations of Constructive Analysis

Author: Errett Bishop

Publisher: Ishi Press

Published: 2012-07

Total Pages: 404

ISBN-13: 9784871877145

DOWNLOAD EBOOK

This book, Foundations of Constructive Analysis, founded the field of constructive analysis because it proved most of the important theorems in real analysis by constructive methods. The author, Errett Albert Bishop, born July 10, 1928, was an American mathematician known for his work on analysis. In the later part of his life Bishop was seen as the leading mathematician in the area of Constructive mathematics. From 1965 until his death, he was professor at the University of California at San Diego.


Book of Proof

Book of Proof

Author: Richard H. Hammack

Publisher:

Published: 2016-01-01

Total Pages: 314

ISBN-13: 9780989472111

DOWNLOAD EBOOK

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.


Mathematics for Machine Learning

Mathematics for Machine Learning

Author: Marc Peter Deisenroth

Publisher: Cambridge University Press

Published: 2020-04-23

Total Pages: 392

ISBN-13: 1108569323

DOWNLOAD EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.


Constructive Analysis

Constructive Analysis

Author: E. Bishop

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 490

ISBN-13: 3642616674

DOWNLOAD EBOOK

This work grew out of Errett Bishop's fundamental treatise 'Founda tions of Constructive Analysis' (FCA), which appeared in 1967 and which contained the bountiful harvest of a remarkably short period of research by its author. Truly, FCA was an exceptional book, not only because of the quantity of original material it contained, but also as a demonstration of the practicability of a program which most ma thematicians believed impossible to carry out. Errett's book went out of print shortly after its publication, and no second edition was produced by its publishers. Some years later, 'by a set of curious chances', it was agreed that a new edition of FCA would be published by Springer Verlag, the revision being carried out by me under Errett's supervision; at the same time, Errett gener ously insisted that I become a joint author. The revision turned out to be much more substantial than we had anticipated, and took longer than we would have wished. Indeed, tragically, Errett died before the work was completed. The present book is the result of our efforts. Although substantially based on FCA, it contains so much new material, and such full revision and expansion of the old, that it is essentially a new book. For this reason, and also to preserve the integrity of the original, I decided to give our joint work a title of its own. Most of the new material outside Chapter 5 originated with Errett.