Discussing theory and transport, synthesis, processing, properties, and applications, this second edition of a standard resource covers advances in the field of electrically conducting polymers and contains more than 1500 drawings, photographs, tables, and equations. Maintaining the style of presentation and depth of coverage that made the first edition so popular, it contains the authoritative contributions of an interdisciplinary team of world-renowned experts encompassing the fields of chemistry, physics, materials science, and engineering. The Handbook of Conducting Polymers highlights progress, delineates improvements, and examines novel tools for polymer and materials scientists..
Learn how recent advances are fueling new possibilities in textiles, optics, electronics, and biomedicine! As the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two vo
In the last 10 years there have been major advances in fundamental understanding and applications and a vast portfolio of new polymer structures with unique and tailored properties was developed. Work moved from a chemical repeat unit structure to one more based on structural control, new polymerization methodologies, properties, processing, and applications. The 4th Edition takes this into account and will be completely rewritten and reorganized, focusing on spin coating, spray coating, blade/slot die coating, layer-by-layer assembly, and fiber spinning methods; property characterizations of redox, interfacial, electrical, and optical phenomena; and commercial applications.
A relatively compact, but nonetheless comprehensive, review of the most important preparative methods for the synthesis and chemical modification of polymers. The contents are subdivided according to chemical structure of the polymer backbone. Complementary emphasis is on special properties and appl
Polymers in Organic Electronics: Polymer Selection for Electronic, Mechatronic, and Optoelectronic Systems provides readers with vital data, guidelines, and techniques for optimally designing organic electronic systems using novel polymers. The book classifies polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules while also providing an introduction to the fundamental principles of polymers and electronics. Features information on concepts and optimized types of electronics and a classification system of electronic polymers, including piezoelectric and pyroelectric, optoelectronic, mechatronic, organic electronic complexes, and more. The book is designed to help readers select the optimized material for structuring their organic electronic system.Chapters discuss the most common properties of electronic polymers, methods of optimization, and polymeric-structured printed circuit boards. The polymeric structures of optoelectronics and photonics are covered and the book concludes with a chapter emphasizing the importance of polymeric structures for packaging of electronic devices. - Provides key identifying details on a range of polymers, micro-polymers, nano-polymers, resins, hydrocarbons, and oligomers - Covers the most common electrical, electronic, and optical properties of electronic polymers - Describes the underlying theories on the mechanics of polymer conductivity - Discusses polymeric structured printed circuit boards, including their rapid prototyping and optimizing their polymeric structures - Shows optimization methods for both polymeric structures of organic active electronic components and organic passive electronic components
This edited work contains eight extensive, review-type contributions by leading scientists in the field of synthetic metals. The authors were invited by the organisers of the International Conference on Science and Technology of Synthetic Metals '98 (ICSM'98) to review the progress of research in the past two decades in a unifying and pedagogical manner. The present work highlights the state-of-the-art of the field and assesses the prospects for future research.
Optoelectronic devices are currently being developed at an extraordinary rate. Organic light-emitting diodes, photovoltaic devices and electro-optical modulators are pivotal to the future of displays, photosensors and solar cells, and communication technologies. This book details the theories underlying the mechanisms involved in the relevant organic materials and covers, at a basic level, how the organic components are made. The first part of the book introduces the fundamental theories used to describe ordered solids and goes onto detail on concepts applicable to localised energy levels. Then the methods used to determine energy levels particular to perfectly ordered molecular and macromolecular systems are discussed along with a detailed consideration of the effects of quasi-particles. The function of excitons and their transfer between two molecules is studied and, in addition, the problems associated with interfaces and charge injection into resistive media are presented. More technological aspects are covered in the second part, which details the actual methods used to fabricate devices based on organic materials, such as dry etching. The principal characterisation techniques are also highlighted. Specific attention is paid to visual displays using organic light-emitting diodes; the conversion of photons into electrical energy (the photovoltaic effect); and for communications and information technologies, the electro-optical modulation of signals.
From the authors' preface: "As we enter the era of intelligent materials and embark upon a new approach to material design, synthesis, and system integration, certain groups of materials will emerge as champions." Standing high among these champions are conductive electroactive polymers (CEPs), which appear destined to play a central ro
The use of conducting polymers for the anticorrosion protection of metals has attracted great interest during the last 30 years. The design and development of conducting polymers-based coating systems with commercial viability is expected to be advanced by applying nanotechnology and has received substantial attention recently. This book begins wit
The Handbook of Polymers in Electronics has been designed to discuss the novel ways in which polymers can be used in the rapidly growing electronics industry. It provides discussion of the preparation and characterisation of suitable polymeric materials and their current and potential applications coupled with the fundamentals of electrical, optical and photophysical properties. It will thus serve the needs of those already active in the electronics field as well as new entrants to the industry.