Handbook of Computability and Complexity in Analysis

Handbook of Computability and Complexity in Analysis

Author: Vasco Brattka

Publisher: Springer Nature

Published: 2021-06-04

Total Pages: 427

ISBN-13: 3030592340

DOWNLOAD EBOOK

Computable analysis is the modern theory of computability and complexity in analysis that arose out of Turing's seminal work in the 1930s. This was motivated by questions such as: which real numbers and real number functions are computable, and which mathematical tasks in analysis can be solved by algorithmic means? Nowadays this theory has many different facets that embrace topics from computability theory, algorithmic randomness, computational complexity, dynamical systems, fractals, and analog computers, up to logic, descriptive set theory, constructivism, and reverse mathematics. In recent decades computable analysis has invaded many branches of analysis, and researchers have studied computability and complexity questions arising from real and complex analysis, functional analysis, and the theory of differential equations, up to (geometric) measure theory and topology. This handbook represents the first coherent cross-section through most active research topics on the more theoretical side of the field. It contains 11 chapters grouped into parts on computability in analysis; complexity, dynamics, and randomness; and constructivity, logic, and descriptive complexity. All chapters are written by leading experts working at the cutting edge of the respective topic. Researchers and graduate students in the areas of theoretical computer science and mathematical logic will find systematic introductions into many branches of computable analysis, and a wealth of information and references that will help them to navigate the modern research literature in this field.


Computable Analysis

Computable Analysis

Author: Klaus Weihrauch

Publisher: Springer Science & Business Media

Published: 2000-09-14

Total Pages: 312

ISBN-13: 9783540668176

DOWNLOAD EBOOK

Merging fundamental concepts of analysis and recursion theory to a new exciting theory, this book provides a solid fundament for studying various aspects of computability and complexity in analysis. It is the result of an introductory course given for several years and is written in a style suitable for graduate-level and senior students in computer science and mathematics. Many examples illustrate the new concepts while numerous exercises of varying difficulty extend the material and stimulate readers to work actively on the text.


Computational Complexity

Computational Complexity

Author: Sanjeev Arora

Publisher: Cambridge University Press

Published: 2009-04-20

Total Pages: 609

ISBN-13: 0521424267

DOWNLOAD EBOOK

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


Algorithms and Theory of Computation Handbook, Volume 2

Algorithms and Theory of Computation Handbook, Volume 2

Author: Mikhail J. Atallah

Publisher: CRC Press

Published: 2009-11-20

Total Pages: 932

ISBN-13: 1584888210

DOWNLOAD EBOOK

Algorithms and Theory of Computation Handbook, Second Edition: Special Topics and Techniques provides an up-to-date compendium of fundamental computer science topics and techniques. It also illustrates how the topics and techniques come together to deliver efficient solutions to important practical problems.Along with updating and revising many of


Algorithms and Theory of Computation Handbook, Volume 1

Algorithms and Theory of Computation Handbook, Volume 1

Author: Mikhail J. Atallah

Publisher: CRC Press

Published: 2009-11-20

Total Pages: 974

ISBN-13: 1584888237

DOWNLOAD EBOOK

Algorithms and Theory of Computation Handbook, Second Edition: General Concepts and Techniques provides an up-to-date compendium of fundamental computer science topics and techniques. It also illustrates how the topics and techniques come together to deliver efficient solutions to important practical problems. Along with updating and revising many


Computability and Complexity

Computability and Complexity

Author: Neil D. Jones

Publisher: MIT Press

Published: 1997

Total Pages: 494

ISBN-13: 9780262100649

DOWNLOAD EBOOK

Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and G�del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive "constant speedup" property: that almost any program can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. Foundations of Computing series


Practical Analysis of Algorithms

Practical Analysis of Algorithms

Author: Dana Vrajitoru

Publisher: Springer

Published: 2014-09-03

Total Pages: 475

ISBN-13: 3319098888

DOWNLOAD EBOOK

This book introduces the essential concepts of algorithm analysis required by core undergraduate and graduate computer science courses, in addition to providing a review of the fundamental mathematical notions necessary to understand these concepts. Features: includes numerous fully-worked examples and step-by-step proofs, assuming no strong mathematical background; describes the foundation of the analysis of algorithms theory in terms of the big-Oh, Omega, and Theta notations; examines recurrence relations; discusses the concepts of basic operation, traditional loop counting, and best case and worst case complexities; reviews various algorithms of a probabilistic nature, and uses elements of probability theory to compute the average complexity of algorithms such as Quicksort; introduces a variety of classical finite graph algorithms, together with an analysis of their complexity; provides an appendix on probability theory, reviewing the major definitions and theorems used in the book.


Turing Computability

Turing Computability

Author: Robert I. Soare

Publisher: Springer

Published: 2016-06-20

Total Pages: 289

ISBN-13: 3642319335

DOWNLOAD EBOOK

Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.


Handbook of Computability Theory

Handbook of Computability Theory

Author: E.R. Griffor

Publisher: Elsevier

Published: 1999-10-01

Total Pages: 741

ISBN-13: 0080533043

DOWNLOAD EBOOK

The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.


Mathematics and Computation

Mathematics and Computation

Author: Avi Wigderson

Publisher: Princeton University Press

Published: 2019-10-29

Total Pages: 434

ISBN-13: 0691189137

DOWNLOAD EBOOK

From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography