Algebraic coding theory is a new and rapidly developing subject, popular for its many practical applications and for its fascinatingly rich mathematical structure. This book provides an elementary yet rigorous introduction to the theory of error-correcting codes. Based on courses given by the author over several years to advanced undergraduates and first-year graduated students, this guide includes a large number of exercises, all with solutions, making the book highly suitable for individual study.
Most coding theory experts date the origin of the subject with the 1948 publication of A Mathematical Theory of Communication by Claude Shannon. Since then, coding theory has grown into a discipline with many practical applications (antennas, networks, memories), requiring various mathematical techniques, from commutative algebra, to semi-definite programming, to algebraic geometry. Most topics covered in the Concise Encyclopedia of Coding Theory are presented in short sections at an introductory level and progress from basic to advanced level, with definitions, examples, and many references. The book is divided into three parts: Part I fundamentals: cyclic codes, skew cyclic codes, quasi-cyclic codes, self-dual codes, codes and designs, codes over rings, convolutional codes, performance bounds Part II families: AG codes, group algebra codes, few-weight codes, Boolean function codes, codes over graphs Part III applications: alternative metrics, algorithmic techniques, interpolation decoding, pseudo-random sequences, lattices, quantum coding, space-time codes, network coding, distributed storage, secret-sharing, and code-based-cryptography. Features Suitable for students and researchers in a wide range of mathematical disciplines Contains many examples and references Most topics take the reader to the frontiers of research
The Coding Manual for Qualitative Researchers is unique in providing, in one volume, an in-depth guide to each of the multiple approaches available for coding qualitative data. In total, 29 different approaches to coding are covered, ranging in complexity from beginner to advanced level and covering the full range of types of qualitative data from interview transcripts to field notes. For each approach profiled, Johnny Saldaña discusses the method’s origins in the professional literature, a description of the method, recommendations for practical applications, and a clearly illustrated example.
The second volume of this work contains Parts 2 and 3 of the "Handbook of Coding Theory". Part 2, "Connections", is devoted to connections between coding theory and other branches of mathematics and computer science. Part 3, "Applications", deals with a variety of applications for coding.
This book is an introduction to information and coding theory at the graduate or advanced undergraduate level. It assumes a basic knowledge of probability and modern algebra, but is otherwise self- contained. The intent is to describe as clearly as possible the fundamental issues involved in these subjects, rather than covering all aspects in an encyclopedic fashion. The first quarter of the book is devoted to information theory, including a proof of Shannon's famous Noisy Coding Theorem. The remainder of the book is devoted to coding theory and is independent of the information theory portion of the book. After a brief discussion of general families of codes, the author discusses linear codes (including the Hamming, Golary, the Reed-Muller codes), finite fields, and cyclic codes (including the BCH, Reed-Solomon, Justesen, Goppa, and Quadratic Residue codes). An appendix reviews relevant topics from modern algebra.
This text is an elementary introduction to information and coding theory. The first part focuses on information theory, covering uniquely decodable and instantaneous codes, Huffman coding, entropy, information channels, and Shannon’s Fundamental Theorem. In the second part, linear algebra is used to construct examples of such codes, such as the Hamming, Hadamard, Golay and Reed-Muller codes. Contains proofs, worked examples, and exercises.
This book is designed to be usable as a textbook for an undergraduate course or for an advanced graduate course in coding theory as well as a reference for researchers in discrete mathematics, engineering and theoretical computer science. This second edition has three parts: an elementary introduction to coding, theory and applications of codes, and algebraic curves. The latter part presents a brief introduction to the theory of algebraic curves and its most important applications to coding theory.
How do the experts solve difficult problems in software development? In this unique and insightful book, leading computer scientists offer case studies that reveal how they found unusual, carefully designed solutions to high-profile projects. You will be able to look over the shoulder of major coding and design experts to see problems through their eyes. This is not simply another design patterns book, or another software engineering treatise on the right and wrong way to do things. The authors think aloud as they work through their project's architecture, the tradeoffs made in its construction, and when it was important to break rules. This book contains 33 chapters contributed by Brian Kernighan, KarlFogel, Jon Bentley, Tim Bray, Elliotte Rusty Harold, Michael Feathers,Alberto Savoia, Charles Petzold, Douglas Crockford, Henry S. Warren,Jr., Ashish Gulhati, Lincoln Stein, Jim Kent, Jack Dongarra and PiotrLuszczek, Adam Kolawa, Greg Kroah-Hartman, Diomidis Spinellis, AndrewKuchling, Travis E. Oliphant, Ronald Mak, Rogerio Atem de Carvalho andRafael Monnerat, Bryan Cantrill, Jeff Dean and Sanjay Ghemawat, SimonPeyton Jones, Kent Dybvig, William Otte and Douglas C. Schmidt, AndrewPatzer, Andreas Zeller, Yukihiro Matsumoto, Arun Mehta, TV Raman,Laura Wingerd and Christopher Seiwald, and Brian Hayes. Beautiful Code is an opportunity for master coders to tell their story. All author royalties will be donated to Amnesty International.