Describes the problems associated with large, commercial-scale syntheses of chiral molecules and the relatively small number of reactions that can be used to achieve these syntheses. The book discusses commercially viable and still-developing methods of compound manufacture, and reviews the best-selling chiral compounds as of 1996.
As pharmaceutical companies look to develop single enantiomers as drug candidates, chemists are increasingly faced with the problems associated with this subclass of organic synthesis. "The Handbook of Chiral Chemicals, Second Edition" highlights the problems associated with the production of chiral compounds on a commercial scale. The handbook fir
Optically active compounds are gaining ever-increasing importance in organic chemistry, both in the academic and the industrial arenas. The rational synthesis of the growing number of chiral chemicals, drugs, and natural products demands efficient methods for producing these compounds in an enantiomerically, highly pure form. Despite the available
Organized to provide maximum utility to the bench synthetic chemist. The editor is well-known for his work in exploring, developing, and applying organopalladium chemistry. Contributors include over 24 world authorities in the field.
Continuous crystallization is an area of intense research, with particular respect to the pharmaceutical industry and fine chemicals. Improvements in continuous crystallization technologies offer chemical industries significant financial gains, through reduced expenditure and operational costs, and consistent product quality. Written by well-known leaders in the field, The Handbook of Continuous Crystallization presents fundamental and applied knowledge, with attention paid to application and scaling up, and the burgeoning area of process intensification. Beginning with concepts around crystallization techniques and control strategies, the reader will learn about experimental methods and computational tools. Case studies spanning fine and bulk chemicals, the pharmaceutical industry, and employing new mathematical tools, put theory into context.
This title was first published in 2001: In the early twentieth century the relevance of chirality to the pharmaceutical industry was established by the fact that one enantiomer of hyoscyamine possessed greater pharmacological activity than the other. Today, most new drugs and those under development consist of a single optically active isomer, and chirality is also becoming an issue for the agrochemical and other industries. Regulatory agencies throughout the world are currently reviewing the importance of chirality with regard to pharmaceutical and agrochemical products. New guidelines from such agencies have been key drivers for the focus on single enantiomer products in these industries. These scientific and regulatory developments have created the need for a guide for workers in the pharmaceutical and chemical industries seeking information on chiral molecules, processes, and commercially available chiral chemicals. Chiral Drugs is a comprehensive listing of over 2500 chiral drugs, classified by therapeutic class, and including structures and physical properties for each entry in the listing. Its companion volume, Chiral Intermediates, presents the same detailed information for over 4700 commercially available chiral chemicals. The 'Chiral Pool' of readily available, relatively inexpensive chiral compounds has been expanding at a rapid rate as more and more products are produced in large quantities at economical prices. New developments in various technologies for isolating, preparing, and purifying chiral materials have greatly increased the opportunities for utilizing optically pure compounds in commercial applications. Novel techniques for classical resolution, new methodologies for developing selective enzymes for biocatalysis, advances in the application of microorganisms for chemical production, and continued progress in the area of asymmetric synthesis have all contributed to the growth of this field. Part One of each book contains four chapters which provide an introduction to topics relevant to the field of chiral chemistry and includes a brief overview of chirality, a short discussion on the current market drivers in the area of chiral chemistry, and a basic presentation of the various sources and methods for obtaining chiral compounds. Part Two presents entries for over 2500 chiral drugs, classified by therapeutic class. For each main entry, the chemical name and a list of trade names and synonyms is provided; the CAS Registry Number, the European Inventory of Existing Commercial Chemical Substances (EINECS) number, and the Merck Index (12th edition) number are given when available. The physical properties, including specific rotation, of each compound are described and indicated applications are presented. The structure of nearly every compound is provided, and the manufacturers and suppliers of the compounds are also given. Indexes, including a master index of names and synonyms and an index of custom manufacturing services for production of chiral compounds, are appended. Chiral Drugs provides an introduction to the types of sources and methods currently in use for obtaining chiral molecules and is an invaluable resource for researchers in the pharmaceutical and biotechnology sectors as well as to those working in the basic biochemical sciences. Chiral Intermediates provides an introduction to the types of sources and methods currently in use for obtaining chiral molecules and is an invaluable resource for information on available chiral molecules. Chiral Intermediates and Chiral Drugs are the most comprehensive and detailed guides to chiral compounds available.
The Handbook for Chemical Process Research and Development focuses on developing processes for chemical and pharmaceutical industries. Forty years ago there were few process research and development activities in the pharmaceutical industry, partially due to the simplicity of the drug molecules. However, with the increasing structural complexity, especially the introduction of chiral centers into the drug molecules and strict regulations set by the EMA and FDA, process R&D has become one of the critical departments for pharmaceutical companies. This book assists with the key responsibility of process chemists to develop chemical processes for manufacturing pharmaceutical intermediates and final drug substances for clinical studies and commercial production.
Now in its fifth edition, the book has been updated to include more detailed descriptions of new or more commonly used techniques since the last edition as well as remove those that are no longer used, procedures which have been developed recently, ionization constants (pKa values) and also more detail about the trivial names of compounds.In addition to having two general chapters on purification procedures, this book provides details of the physical properties and purification procedures, taken from literature, of a very extensive number of organic, inorganic and biochemical compounds which are commercially available. This is the only complete source that covers the purification of laboratory chemicals that are commercially available in this manner and format.* Complete update of this valuable, well-known reference* Provides purification procedures of commercially available chemicals and biochemicals* Includes an extremely useful compilation of ionisation constants
Delineating its usage in separation, purification and detection processes across a variety of disciplines, from industry to applied research, this work discusses the principles, techniques and instrumentation involving HPLC within a detailed framework. Over 100 tables present previously scattered experimental data.
This book aims to guide and inspire drug researchers as they enter the 21st century. Stereochemistry is an essential dimension in pharmacology and should be understood as such by all drug researchers whatever their background. When used as probes or medicines, stereoisomeric drugs offer invaluable insights or innovative therapeutic strategies. The book spans the subject from the molecular to the clinical. The first section on chemical aspects contains chapters on chemical synthesis, analysis, natural products, chiral stability (racemezation) and physical properties. The second section is on experimental pharmacology, with chapters on drug-receptor interactions, chiral recognition, ion channels, and molecular toxicology. The third section focuses on drug disposition, with chapters on absorption, distribution, protein binding, metabolism and elimination. The final section is dedicated to regulatory and clinical aspects.