Hamiltonian Mechanics of Gauge Systems

Hamiltonian Mechanics of Gauge Systems

Author: Lev V. Prokhorov

Publisher: Cambridge University Press

Published: 2011-09-22

Total Pages: 485

ISBN-13: 1139500902

DOWNLOAD EBOOK

The principles of gauge symmetry and quantization are fundamental to modern understanding of the laws of electromagnetism, weak and strong subatomic forces and the theory of general relativity. Ideal for graduate students and researchers in theoretical and mathematical physics, this unique book provides a systematic introduction to Hamiltonian mechanics of systems with gauge symmetry. The book reveals how gauge symmetry may lead to a non-trivial geometry of the physical phase space and studies its effect on quantum dynamics by path integral methods. It also covers aspects of Hamiltonian path integral formalism in detail, along with a number of related topics such as the theory of canonical transformations on phase space supermanifolds, non-commutativity of canonical quantization and elimination of non-physical variables. The discussion is accompanied by numerous detailed examples of dynamical models with gauge symmetries, clearly illustrating the key concepts.


Quantization of Gauge Systems

Quantization of Gauge Systems

Author: Marc Henneaux

Publisher: Princeton University Press

Published: 1992

Total Pages: 556

ISBN-13: 9780691037691

DOWNLOAD EBOOK

This book is a systematic study of the classical and quantum theories of gauge systems. It starts with Dirac's analysis showing that gauge theories are constrained Hamiltonian systems. The classical foundations of BRST theory are then laid out with a review of the necessary concepts from homological algebra. Reducible gauge systems are discussed, and the relationship between BRST cohomology and gauge invariance is carefully explained. The authors then proceed to the canonical quantization of gauge systems, first without ghosts (reduced phase space quantization, Dirac method) and second in the BRST context (quantum BRST cohomology). The path integral is discussed next. The analysis covers indefinite metric systems, operator insertions, and Ward identities. The antifield formalism is also studied and its equivalence with canonical methods is derived. The examples of electromagnetism and abelian 2-form gauge fields are treated in detail. The book gives a general and unified treatment of the subject in a self-contained manner. Exercises are provided at the end of each chapter, and pedagogical examples are covered in the text.


Classical and Quantum Dynamics of Constrained Hamiltonian Systems

Classical and Quantum Dynamics of Constrained Hamiltonian Systems

Author: Heinz J. Rothe

Publisher: World Scientific

Published: 2010

Total Pages: 317

ISBN-13: 9814299642

DOWNLOAD EBOOK

This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field?antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field.


Hamiltonian Dynamics

Hamiltonian Dynamics

Author: Gaetano Vilasi

Publisher: World Scientific

Published: 2001-03-09

Total Pages: 457

ISBN-13: 9814496731

DOWNLOAD EBOOK

This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems.As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity.As a monograph, the book deals with the advanced research topic of completely integrable dynamics, with both finitely and infinitely many degrees of freedom, including geometrical structures of solitonic wave equations.


Gauge Mechanics

Gauge Mechanics

Author: L. Mangiarotti

Publisher: World Scientific

Published: 1998

Total Pages: 376

ISBN-13: 9789810236038

DOWNLOAD EBOOK

This book presents in a unified way modern geometric methods in analytical mechanics based on the application of fibre bundles, jet manifold formalism and the related concept of connection. Non-relativistic mechanics is seen as a particular field theory over a one-dimensional base. In fact, the concept of connection is the major link throughout the book. In the gauge scheme of mechanics, connections appear as reference frames, dynamic equations, and in Lagrangian and Hamiltonian formalisms. Non-inertial forces, energy conservation laws and other phenomena related to reference frames are analyzed; that leads us to observable physics. The gauge formulation of classical mechanics is extended to quantum mechanics under different reference frames. Special topics on geometric BRST mechanics, relativistic mechanics and others, together with many examples, are also dealt with.


Geometric Formulation of Classical and Quantum Mechanics

Geometric Formulation of Classical and Quantum Mechanics

Author: G. Giachetta

Publisher: World Scientific

Published: 2011

Total Pages: 405

ISBN-13: 9814313726

DOWNLOAD EBOOK

The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. This book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations.


Lagrangian and Hamiltonian Dynamics

Lagrangian and Hamiltonian Dynamics

Author: Peter Mann

Publisher: Oxford University Press

Published: 2018

Total Pages: 553

ISBN-13: 0198822375

DOWNLOAD EBOOK

The book introduces classical mechanics. It does so in an informal style with numerous fresh, modern and inter-disciplinary applications assuming no prior knowledge of the necessary mathematics. The book provides a comprehensive and self-contained treatment of the subject matter up to the forefront of research in multiple areas.


Generalized Hamiltonian Formalism for Field Theory

Generalized Hamiltonian Formalism for Field Theory

Author: G. Sardanashvily

Publisher: World Scientific

Published: 1995

Total Pages: 168

ISBN-13: 9789810220457

DOWNLOAD EBOOK

In the framework of the geometric formulation of field theory, classical fields are represented by sections of fibred manifolds, and their dynamics is phrased in jet manifold terms. The Hamiltonian formalism in fibred manifolds is the multisymplectic generalization of the Hamiltonian formalism in mechanics when canonical momenta correspond to derivatives of fields with respect to all world coordinates, not only to time. This book is devoted to the application of this formalism to fundamental field models including gauge theory, gravitation theory, and spontaneous symmetry breaking. All these models are constraint ones. Their Euler-Lagrange equations are underdetermined and need additional conditions. In the Hamiltonian formalism, these conditions appear automatically as a part of the Hamilton equations, corresponding to different Hamiltonian forms associated with a degenerate Lagrangian density. The general procedure for describing constraint systems with quadratic and affine Lagrangian densities is presented.


Classical Theory of Gauge Fields

Classical Theory of Gauge Fields

Author: Valery Rubakov

Publisher: Princeton University Press

Published: 2009-02-09

Total Pages: 456

ISBN-13: 1400825091

DOWNLOAD EBOOK

Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.